强耦合汤川流体的熵。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-09-01 DOI:10.1103/PhysRevE.110.034602
S A Khrapak
{"title":"强耦合汤川流体的熵。","authors":"S A Khrapak","doi":"10.1103/PhysRevE.110.034602","DOIUrl":null,"url":null,"abstract":"<p><p>The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems with soft pairwise interactions.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy of strongly coupled Yukawa fluids.\",\"authors\":\"S A Khrapak\",\"doi\":\"10.1103/PhysRevE.110.034602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems with soft pairwise interactions.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.034602\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.034602","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本文从多个角度讨论了强耦合汤川流体的熵。首先,论证了稠密流体中原子动力学的振动范式可用于获得简单而准确的熵值估计,而无需任何可调参数。其次,解释了为什么简单流体在凝固点的过量熵值应该是一个准通用值,并证明了在汤川流体中,凝固点熵对筛选参数的剩余非常微弱的依赖性可以用一个简单的线性函数来描述。第三,研究了过量熵与凝固温度的比例关系,提出了罗森菲尔德-塔拉索纳比例关系的修正形式,并简要讨论了一些后果。第四,从过量熵的角度讨论了尤卡瓦系统相图上弗伦克尔线的位置,并与文献中的一些预测进行了比较。第五,利用育川流体输运特性的当代数据集重新审查了输运系数(自扩散、粘度和热导率)的过量熵缩放。这些结果对于复杂(多尘)等离子体、胶体悬浮液、电解质以及其他具有软配对相互作用的相关系统具有特殊意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy of strongly coupled Yukawa fluids.

The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems with soft pairwise interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Efficient machine learning approach for accurate free-energy profiles and kinetic rates. Emergence of unitary symmetry of microcanonically truncated operators in chaotic quantum systems. Eshelby problem in amorphous solids. Exactly solvable Stuart-Landau models in arbitrary dimensions. Hydrodynamic behavior near dynamical criticality of a facilitated conservative lattice gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1