{"title":"有限温度下的全极化费米系统。","authors":"Krzysztof Myśliwy, Marek Napiórkowski","doi":"10.1103/PhysRevE.110.034129","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a simple model of an interacting, fully spin-polarized Fermi gas in dimensions d=2 and d=3, and derive the approximate expression for the energy spectrum and the corresponding formula for the Helmholtz free energy. We analyze the thermodynamics of the system and find the lines of first-order phase transitions between the low- and high-density phases terminating at critical points. The properties of the corresponding phase diagrams are qualitatively different for d=2 and 3, and sensitively depend on the interparticle attraction, which marks a departure from the standard van der Waals theory. The differences originate from the Pauli exclusion principle and are embedded in the fermionic nature of the system under study.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully polarized Fermi systems at finite temperature.\",\"authors\":\"Krzysztof Myśliwy, Marek Napiórkowski\",\"doi\":\"10.1103/PhysRevE.110.034129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a simple model of an interacting, fully spin-polarized Fermi gas in dimensions d=2 and d=3, and derive the approximate expression for the energy spectrum and the corresponding formula for the Helmholtz free energy. We analyze the thermodynamics of the system and find the lines of first-order phase transitions between the low- and high-density phases terminating at critical points. The properties of the corresponding phase diagrams are qualitatively different for d=2 and 3, and sensitively depend on the interparticle attraction, which marks a departure from the standard van der Waals theory. The differences originate from the Pauli exclusion principle and are embedded in the fermionic nature of the system under study.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.034129\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.034129","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Fully polarized Fermi systems at finite temperature.
We propose a simple model of an interacting, fully spin-polarized Fermi gas in dimensions d=2 and d=3, and derive the approximate expression for the energy spectrum and the corresponding formula for the Helmholtz free energy. We analyze the thermodynamics of the system and find the lines of first-order phase transitions between the low- and high-density phases terminating at critical points. The properties of the corresponding phase diagrams are qualitatively different for d=2 and 3, and sensitively depend on the interparticle attraction, which marks a departure from the standard van der Waals theory. The differences originate from the Pauli exclusion principle and are embedded in the fermionic nature of the system under study.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.