探索最佳量子重置:链上粒子的协议

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-09-01 DOI:10.1103/PhysRevE.110.034132
Pallabi Chatterjee, S Aravinda, Ranjan Modak
{"title":"探索最佳量子重置:链上粒子的协议","authors":"Pallabi Chatterjee, S Aravinda, Ranjan Modak","doi":"10.1103/PhysRevE.110.034132","DOIUrl":null,"url":null,"abstract":"<p><p>In the classical context, it is well known that, sometimes, if a search does not find its target, it is better to start the process anew. This is known as resetting. The quantum counterpart of resetting also indicates speeding up the detection process by eliminating the dark states, i.e., situations in which the particle avoids detection. In this work, we introduce the most probable position resetting (MPR) protocol, in which, at a given resetting step, resets are done with certain probabilities to the set of possible peak positions (where the probability of finding the particle is maximum) that could occur because of the previous resets and followed by uninterrupted unitary evolution, irrespective of which path was taken by the particle in previous steps. In a tight-binding lattice model, there exists a twofold degeneracy (left and right) of the positions of maximum probability. The survival probability with optimal restart rate approaches 0 (detection probability approaches 1) when the particle is reset with equal probability on both sides path independently. This protocol significantly reduces the optimal mean first-detected-passage time (FDT), and it performs better even if the detector is far apart compared to the usual resetting protocols in which the particle is brought back to the initial position. We propose a modified protocol, an adaptive two-stage MPR, by making the associated probabilities of going to the right and left a function of steps. In this protocol, we see a further reduction of the optimal mean FDT and improvement in the search process when the detector is far apart.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quest for optimal quantum resetting: Protocols for a particle on a chain.\",\"authors\":\"Pallabi Chatterjee, S Aravinda, Ranjan Modak\",\"doi\":\"10.1103/PhysRevE.110.034132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the classical context, it is well known that, sometimes, if a search does not find its target, it is better to start the process anew. This is known as resetting. The quantum counterpart of resetting also indicates speeding up the detection process by eliminating the dark states, i.e., situations in which the particle avoids detection. In this work, we introduce the most probable position resetting (MPR) protocol, in which, at a given resetting step, resets are done with certain probabilities to the set of possible peak positions (where the probability of finding the particle is maximum) that could occur because of the previous resets and followed by uninterrupted unitary evolution, irrespective of which path was taken by the particle in previous steps. In a tight-binding lattice model, there exists a twofold degeneracy (left and right) of the positions of maximum probability. The survival probability with optimal restart rate approaches 0 (detection probability approaches 1) when the particle is reset with equal probability on both sides path independently. This protocol significantly reduces the optimal mean first-detected-passage time (FDT), and it performs better even if the detector is far apart compared to the usual resetting protocols in which the particle is brought back to the initial position. We propose a modified protocol, an adaptive two-stage MPR, by making the associated probabilities of going to the right and left a function of steps. In this protocol, we see a further reduction of the optimal mean FDT and improvement in the search process when the detector is far apart.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.034132\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.034132","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在传统的情况下,有时如果搜索没有找到目标,最好重新开始搜索过程。这就是所谓的重置。与重置相对应的量子方法也可以通过消除暗态(即粒子避免被探测到的情况)来加快探测过程。在这项工作中,我们引入了最可能位置重置(MPR)协议,在该协议中,在给定的重置步骤中,以一定的概率对可能的峰值位置集(发现粒子的概率最大)进行重置,这些峰值位置集可能会因为之前的重置而出现,之后是不间断的单元演化,与粒子在之前步骤中走过的路径无关。在紧密结合晶格模型中,最大概率位置存在两重退化(左侧和右侧)。当粒子在两侧路径上以相同概率独立重置时,最优重置率下的存活概率接近于 0(检测概率接近于 1)。与通常将粒子带回初始位置的重置协议相比,该协议大大缩短了最佳平均首次检测通过时间(FDT),而且即使检测器相距甚远,其性能也更好。我们提出了一种修改后的协议,即自适应两阶段 MPR,将向右和向左移动的相关概率作为步数的函数。在这个协议中,我们发现最优平均 FDT 进一步降低,而且当探测器相距较远时,搜索过程也有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quest for optimal quantum resetting: Protocols for a particle on a chain.

In the classical context, it is well known that, sometimes, if a search does not find its target, it is better to start the process anew. This is known as resetting. The quantum counterpart of resetting also indicates speeding up the detection process by eliminating the dark states, i.e., situations in which the particle avoids detection. In this work, we introduce the most probable position resetting (MPR) protocol, in which, at a given resetting step, resets are done with certain probabilities to the set of possible peak positions (where the probability of finding the particle is maximum) that could occur because of the previous resets and followed by uninterrupted unitary evolution, irrespective of which path was taken by the particle in previous steps. In a tight-binding lattice model, there exists a twofold degeneracy (left and right) of the positions of maximum probability. The survival probability with optimal restart rate approaches 0 (detection probability approaches 1) when the particle is reset with equal probability on both sides path independently. This protocol significantly reduces the optimal mean first-detected-passage time (FDT), and it performs better even if the detector is far apart compared to the usual resetting protocols in which the particle is brought back to the initial position. We propose a modified protocol, an adaptive two-stage MPR, by making the associated probabilities of going to the right and left a function of steps. In this protocol, we see a further reduction of the optimal mean FDT and improvement in the search process when the detector is far apart.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Efficient machine learning approach for accurate free-energy profiles and kinetic rates. Emergence of unitary symmetry of microcanonically truncated operators in chaotic quantum systems. Eshelby problem in amorphous solids. Exactly solvable Stuart-Landau models in arbitrary dimensions. Hydrodynamic behavior near dynamical criticality of a facilitated conservative lattice gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1