{"title":"电动不稳定性中蜿蜒和曲折模式的机理。","authors":"Prateek Gupta, Supreet Singh Bahga","doi":"10.1103/PhysRevE.110.035106","DOIUrl":null,"url":null,"abstract":"<p><p>The flow of miscible electrolyte streams with mismatched electrical conductivities in the presence of a parallel applied electric field is known to exhibit electrokinetic instability (EKI). This paper deals with EKI in a configuration where the base state is established by electro-osmotic flow (EOF) of three coflowing streams, with the center stream having different conductivity than the sheath streams. All reported experiments of this EKI have shown that the instability exhibits either sinuous or varicose modes depending upon whether the center stream has higher or lower conductivity than the sheath streams, respectively. In this paper we elucidate the physical mechanism underlying the selection of these unstable modes in EKI using linear stability analysis. The stability analysis shows that the EOF simply convects the unstable modes besides establishing the base state. The instability occurs due to stationary convection cells, in the reference frame moving with the EOF, resulting from the coupling of the applied electric field with free charge in the regions with conductivity gradients. Importantly, we show that the unstable and stable disturbances for the configuration with a higher conductivity center stream have opposite stability characteristics when the center stream has lower conductivity than the sheath streams. Our analysis correctly explains the numerous experimental observations showing the consistent appearance of sinuous modes for higher conductivity and varicose modes for lower conductivity center streams.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of sinuous and varicose modes in electrokinetic instability.\",\"authors\":\"Prateek Gupta, Supreet Singh Bahga\",\"doi\":\"10.1103/PhysRevE.110.035106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The flow of miscible electrolyte streams with mismatched electrical conductivities in the presence of a parallel applied electric field is known to exhibit electrokinetic instability (EKI). This paper deals with EKI in a configuration where the base state is established by electro-osmotic flow (EOF) of three coflowing streams, with the center stream having different conductivity than the sheath streams. All reported experiments of this EKI have shown that the instability exhibits either sinuous or varicose modes depending upon whether the center stream has higher or lower conductivity than the sheath streams, respectively. In this paper we elucidate the physical mechanism underlying the selection of these unstable modes in EKI using linear stability analysis. The stability analysis shows that the EOF simply convects the unstable modes besides establishing the base state. The instability occurs due to stationary convection cells, in the reference frame moving with the EOF, resulting from the coupling of the applied electric field with free charge in the regions with conductivity gradients. Importantly, we show that the unstable and stable disturbances for the configuration with a higher conductivity center stream have opposite stability characteristics when the center stream has lower conductivity than the sheath streams. Our analysis correctly explains the numerous experimental observations showing the consistent appearance of sinuous modes for higher conductivity and varicose modes for lower conductivity center streams.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.035106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.035106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Mechanism of sinuous and varicose modes in electrokinetic instability.
The flow of miscible electrolyte streams with mismatched electrical conductivities in the presence of a parallel applied electric field is known to exhibit electrokinetic instability (EKI). This paper deals with EKI in a configuration where the base state is established by electro-osmotic flow (EOF) of three coflowing streams, with the center stream having different conductivity than the sheath streams. All reported experiments of this EKI have shown that the instability exhibits either sinuous or varicose modes depending upon whether the center stream has higher or lower conductivity than the sheath streams, respectively. In this paper we elucidate the physical mechanism underlying the selection of these unstable modes in EKI using linear stability analysis. The stability analysis shows that the EOF simply convects the unstable modes besides establishing the base state. The instability occurs due to stationary convection cells, in the reference frame moving with the EOF, resulting from the coupling of the applied electric field with free charge in the regions with conductivity gradients. Importantly, we show that the unstable and stable disturbances for the configuration with a higher conductivity center stream have opposite stability characteristics when the center stream has lower conductivity than the sheath streams. Our analysis correctly explains the numerous experimental observations showing the consistent appearance of sinuous modes for higher conductivity and varicose modes for lower conductivity center streams.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.