Stavroula Psachna, Maria Eleni Chondrogianni, Konstantinos Stathopoulos, Antonis Polymeris, Antonios Chatzigeorgiou, Efstathios Chronopoulos, Symeon Tournis, Eva Kassi
{"title":"抗糖尿病药物对骨代谢的影响:简明综述。","authors":"Stavroula Psachna, Maria Eleni Chondrogianni, Konstantinos Stathopoulos, Antonis Polymeris, Antonios Chatzigeorgiou, Efstathios Chronopoulos, Symeon Tournis, Eva Kassi","doi":"10.1007/s12020-024-04070-1","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, which derives from either insufficient insulin production [type 1 diabetes mellitus (T1DM)] or both impaired insulin sensitivity along with inadequate insulin production [type 2 diabetes mellitus (T2DM)] and affects millions of people worldwide. In addition to the adverse effects of DM on classical target organs and tissues, skeletal health can also be adversely affected. There is considerable evidence linking DM with osteoporosis. The fracture risk in patients with DM differs upon the type of diabetes, and it appears to be related to the type of anti-diabetic treatment. Antidiabetic drugs may have various effects on bone health. Most of them have neutral or even favorable effects on bone metabolism with the exception of thiazolidinediones (TZDs). Some studies suggest that TZDs may have negative impact on bone health by decreasing bone formation and increasing the fracture risk. There are also limited studies linking the use of canagliflozin, a Sodium-glucose contransporter-2 inhibitor (SGLT2i), with increased fracture risk. On the other hand, therapies that are based on incretin effect, like Dipeptidyl peptidase-4 inhibitors (DPP-4i) and Glucagon-like peptide-1 receptor agonizts (GLP-1RAs) might have positive effects on bone health by promoting bone formation. Herein we review the impact of antidiabetic drugs on bone health, highlighting the potential benefits and risks associated with these medications in an attempt to contribute to the development of personalized treatment strategies for individuals with DM.</p>","PeriodicalId":49211,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of antidiabetic drugs on bone metabolism: a concise review.\",\"authors\":\"Stavroula Psachna, Maria Eleni Chondrogianni, Konstantinos Stathopoulos, Antonis Polymeris, Antonios Chatzigeorgiou, Efstathios Chronopoulos, Symeon Tournis, Eva Kassi\",\"doi\":\"10.1007/s12020-024-04070-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, which derives from either insufficient insulin production [type 1 diabetes mellitus (T1DM)] or both impaired insulin sensitivity along with inadequate insulin production [type 2 diabetes mellitus (T2DM)] and affects millions of people worldwide. In addition to the adverse effects of DM on classical target organs and tissues, skeletal health can also be adversely affected. There is considerable evidence linking DM with osteoporosis. The fracture risk in patients with DM differs upon the type of diabetes, and it appears to be related to the type of anti-diabetic treatment. Antidiabetic drugs may have various effects on bone health. Most of them have neutral or even favorable effects on bone metabolism with the exception of thiazolidinediones (TZDs). Some studies suggest that TZDs may have negative impact on bone health by decreasing bone formation and increasing the fracture risk. There are also limited studies linking the use of canagliflozin, a Sodium-glucose contransporter-2 inhibitor (SGLT2i), with increased fracture risk. On the other hand, therapies that are based on incretin effect, like Dipeptidyl peptidase-4 inhibitors (DPP-4i) and Glucagon-like peptide-1 receptor agonizts (GLP-1RAs) might have positive effects on bone health by promoting bone formation. Herein we review the impact of antidiabetic drugs on bone health, highlighting the potential benefits and risks associated with these medications in an attempt to contribute to the development of personalized treatment strategies for individuals with DM.</p>\",\"PeriodicalId\":49211,\"journal\":{\"name\":\"Endocrine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12020-024-04070-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-024-04070-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The effect of antidiabetic drugs on bone metabolism: a concise review.
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, which derives from either insufficient insulin production [type 1 diabetes mellitus (T1DM)] or both impaired insulin sensitivity along with inadequate insulin production [type 2 diabetes mellitus (T2DM)] and affects millions of people worldwide. In addition to the adverse effects of DM on classical target organs and tissues, skeletal health can also be adversely affected. There is considerable evidence linking DM with osteoporosis. The fracture risk in patients with DM differs upon the type of diabetes, and it appears to be related to the type of anti-diabetic treatment. Antidiabetic drugs may have various effects on bone health. Most of them have neutral or even favorable effects on bone metabolism with the exception of thiazolidinediones (TZDs). Some studies suggest that TZDs may have negative impact on bone health by decreasing bone formation and increasing the fracture risk. There are also limited studies linking the use of canagliflozin, a Sodium-glucose contransporter-2 inhibitor (SGLT2i), with increased fracture risk. On the other hand, therapies that are based on incretin effect, like Dipeptidyl peptidase-4 inhibitors (DPP-4i) and Glucagon-like peptide-1 receptor agonizts (GLP-1RAs) might have positive effects on bone health by promoting bone formation. Herein we review the impact of antidiabetic drugs on bone health, highlighting the potential benefits and risks associated with these medications in an attempt to contribute to the development of personalized treatment strategies for individuals with DM.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.