Wenyuan Wu , Siyuan Duan , Yuan Sun , Yang Yu , Dong Liu , Dezhong Peng
{"title":"用于正演和反演 PDE 问题的深度模糊物理信息神经网络。","authors":"Wenyuan Wu , Siyuan Duan , Yuan Sun , Yang Yu , Dong Liu , Dezhong Peng","doi":"10.1016/j.neunet.2024.106750","DOIUrl":null,"url":null,"abstract":"<div><div>As a grid-independent approach for solving partial differential equations (PDEs), Physics-Informed Neural Networks (PINNs) have garnered significant attention due to their unique capability to simultaneously learn from both data and the governing physical equations. Existing PINNs methods always assume that the data is stable and reliable, but data obtained from commercial simulation software often inevitably have ambiguous and inaccurate problems. Obviously, this will have a negative impact on the use of PINNs to solve forward and inverse PDE problems. To overcome the above problems, this paper proposes a Deep Fuzzy Physics-Informed Neural Networks (FPINNs) that explores the uncertainty in data. Specifically, to capture the uncertainty behind the data, FPINNs learns fuzzy representation through the fuzzy membership function layer and fuzzy rule layer. Afterward, we use deep neural networks to learn neural representation. Subsequently, the fuzzy representation is integrated with the neural representation. Finally, the residual of the physical equation and the data error are considered as the two components of the loss function, guiding the network to optimize towards adherence to the physical laws for accurate prediction of the physical field. Extensive experiment results show that FPINNs outperforms these comparative methods in solving forward and inverse PDE problems on four widely used datasets. The demo code will be released at <span><span>https://github.com/siyuancncd/FPINNs</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106750"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep fuzzy physics-informed neural networks for forward and inverse PDE problems\",\"authors\":\"Wenyuan Wu , Siyuan Duan , Yuan Sun , Yang Yu , Dong Liu , Dezhong Peng\",\"doi\":\"10.1016/j.neunet.2024.106750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a grid-independent approach for solving partial differential equations (PDEs), Physics-Informed Neural Networks (PINNs) have garnered significant attention due to their unique capability to simultaneously learn from both data and the governing physical equations. Existing PINNs methods always assume that the data is stable and reliable, but data obtained from commercial simulation software often inevitably have ambiguous and inaccurate problems. Obviously, this will have a negative impact on the use of PINNs to solve forward and inverse PDE problems. To overcome the above problems, this paper proposes a Deep Fuzzy Physics-Informed Neural Networks (FPINNs) that explores the uncertainty in data. Specifically, to capture the uncertainty behind the data, FPINNs learns fuzzy representation through the fuzzy membership function layer and fuzzy rule layer. Afterward, we use deep neural networks to learn neural representation. Subsequently, the fuzzy representation is integrated with the neural representation. Finally, the residual of the physical equation and the data error are considered as the two components of the loss function, guiding the network to optimize towards adherence to the physical laws for accurate prediction of the physical field. Extensive experiment results show that FPINNs outperforms these comparative methods in solving forward and inverse PDE problems on four widely used datasets. The demo code will be released at <span><span>https://github.com/siyuancncd/FPINNs</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106750\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024006749\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024006749","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep fuzzy physics-informed neural networks for forward and inverse PDE problems
As a grid-independent approach for solving partial differential equations (PDEs), Physics-Informed Neural Networks (PINNs) have garnered significant attention due to their unique capability to simultaneously learn from both data and the governing physical equations. Existing PINNs methods always assume that the data is stable and reliable, but data obtained from commercial simulation software often inevitably have ambiguous and inaccurate problems. Obviously, this will have a negative impact on the use of PINNs to solve forward and inverse PDE problems. To overcome the above problems, this paper proposes a Deep Fuzzy Physics-Informed Neural Networks (FPINNs) that explores the uncertainty in data. Specifically, to capture the uncertainty behind the data, FPINNs learns fuzzy representation through the fuzzy membership function layer and fuzzy rule layer. Afterward, we use deep neural networks to learn neural representation. Subsequently, the fuzzy representation is integrated with the neural representation. Finally, the residual of the physical equation and the data error are considered as the two components of the loss function, guiding the network to optimize towards adherence to the physical laws for accurate prediction of the physical field. Extensive experiment results show that FPINNs outperforms these comparative methods in solving forward and inverse PDE problems on four widely used datasets. The demo code will be released at https://github.com/siyuancncd/FPINNs.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.