{"title":"H5N1-NS1 蛋白通过与宿主 lncRNA PIK3CD-AS2 相互作用,影响宿主细胞周期和细胞凋亡。","authors":"Man Zhang, Yingyue Zeng, Qingqing Liu, Feng Li, Jian Zhao, Zhikui Liu, Hongsheng Liu, Huawei Feng","doi":"10.1007/s11262-024-02118-y","DOIUrl":null,"url":null,"abstract":"<p><p>Long noncoding RNAs (lncRNAs) are involved in the host antiviral response, but how host lncRNAs interact with viral proteins remains unclear. The NS1 protein of avian influenza viruses can affect the interferon-dependent expression of several host lncRNAs, but the exact mechanism is unknown. To further investigate the molecular mechanism and functions of NS1 proteins and host lncRNAs, we performed RNA-immunoprecipitation sequencing assays on A549 cells transfected with the H5N1-NS1 gene. We identified multiple sets of host lncRNAs that interact with NS1. The results of the RNA pulldown assay indicated that PIK3CD-AS2 can directly interact with NS1 in vitro. Immunofluorescence confocal microscopy showed that these proteins were colocalized in the nucleus. Further studies revealed that PIK3CD-AS2 can also inhibit the transcription of NS1, which in turn affects the translation of the NS1 protein. PIK3CD-AS2 overexpression regulates NS1 protein-induced cell cycle arrest and initiates apoptosis. We hope this work will help elucidate the molecular mechanisms associated with NS1 proteins in the study of viral infections to promote the development of potential treatments for patients infected with avian influenza A viruses.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The H5N1-NS1 protein affects the host cell cycle and apoptosis through interaction with the host lncRNA PIK3CD-AS2.\",\"authors\":\"Man Zhang, Yingyue Zeng, Qingqing Liu, Feng Li, Jian Zhao, Zhikui Liu, Hongsheng Liu, Huawei Feng\",\"doi\":\"10.1007/s11262-024-02118-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long noncoding RNAs (lncRNAs) are involved in the host antiviral response, but how host lncRNAs interact with viral proteins remains unclear. The NS1 protein of avian influenza viruses can affect the interferon-dependent expression of several host lncRNAs, but the exact mechanism is unknown. To further investigate the molecular mechanism and functions of NS1 proteins and host lncRNAs, we performed RNA-immunoprecipitation sequencing assays on A549 cells transfected with the H5N1-NS1 gene. We identified multiple sets of host lncRNAs that interact with NS1. The results of the RNA pulldown assay indicated that PIK3CD-AS2 can directly interact with NS1 in vitro. Immunofluorescence confocal microscopy showed that these proteins were colocalized in the nucleus. Further studies revealed that PIK3CD-AS2 can also inhibit the transcription of NS1, which in turn affects the translation of the NS1 protein. PIK3CD-AS2 overexpression regulates NS1 protein-induced cell cycle arrest and initiates apoptosis. We hope this work will help elucidate the molecular mechanisms associated with NS1 proteins in the study of viral infections to promote the development of potential treatments for patients infected with avian influenza A viruses.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-024-02118-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-024-02118-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The H5N1-NS1 protein affects the host cell cycle and apoptosis through interaction with the host lncRNA PIK3CD-AS2.
Long noncoding RNAs (lncRNAs) are involved in the host antiviral response, but how host lncRNAs interact with viral proteins remains unclear. The NS1 protein of avian influenza viruses can affect the interferon-dependent expression of several host lncRNAs, but the exact mechanism is unknown. To further investigate the molecular mechanism and functions of NS1 proteins and host lncRNAs, we performed RNA-immunoprecipitation sequencing assays on A549 cells transfected with the H5N1-NS1 gene. We identified multiple sets of host lncRNAs that interact with NS1. The results of the RNA pulldown assay indicated that PIK3CD-AS2 can directly interact with NS1 in vitro. Immunofluorescence confocal microscopy showed that these proteins were colocalized in the nucleus. Further studies revealed that PIK3CD-AS2 can also inhibit the transcription of NS1, which in turn affects the translation of the NS1 protein. PIK3CD-AS2 overexpression regulates NS1 protein-induced cell cycle arrest and initiates apoptosis. We hope this work will help elucidate the molecular mechanisms associated with NS1 proteins in the study of viral infections to promote the development of potential treatments for patients infected with avian influenza A viruses.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.