Wenhui Zhai, Hairui Tian, Xuemei Liang, Yunqiang Wu, Jian Wen, Zhipeng Liu, Xiaodong Zhao, Li Tao, Kang Zou
{"title":"雄激素阻断会通过 Wee1 和 Lfng 损害 Sertoli 细胞的增殖和功能。","authors":"Wenhui Zhai, Hairui Tian, Xuemei Liang, Yunqiang Wu, Jian Wen, Zhipeng Liu, Xiaodong Zhao, Li Tao, Kang Zou","doi":"10.1186/s12964-024-01875-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Androgens are essential hormones for testicular development and the maintenance of male fertility. Environmental factors, stress, aging, and psychological conditions can disrupt androgen production, impacting the androgen signaling pathway and consequently spermatogenesis. Within the testes, testosterone is produced by Leydig cells and acts on Sertoli cells by activating the androgen receptor (AR), which then translocates to the nucleus to function as a transcription factor. Despite clinical correlations between low testosterone levels and diminished sperm quality, the precise mechanism remains unclear.</p><p><strong>Methods: </strong>This study explores the hypothesis that reduced androgen levels impair Sertoli cell function by disrupting AR transcriptional regulation. Using an androgen blockade model with enzalutamide, we investigated the impact of low androgen levels on AR target genes in Sertoli cells through ChIP-seq and RNA-seq assays.</p><p><strong>Results: </strong>Our results reveal that androgen blockage increases AR enrichment on the promoter region of Wee1, promoting Wee1 expression, while decreasing binding to the promoter region of Lfng, inhibiting its expression. Increased WEE1 protein inhibits Sertoli cell proliferation, whereas reduced LFNG affects Notch modification, leading to decreased production of glial cell line-derived neurotrophic factor (GDNF), a key growth factor for spermatogonial stem cell self-renewal.</p><p><strong>Conclusions: </strong>These findings provide new insights into the molecular mechanisms by which low androgen levels interfere with Sertoli cell functions, offering novel perspectives for the clinical treatment of male reproductive disorders.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"498"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Androgen blockage impairs proliferation and function of Sertoli cells via Wee1 and Lfng.\",\"authors\":\"Wenhui Zhai, Hairui Tian, Xuemei Liang, Yunqiang Wu, Jian Wen, Zhipeng Liu, Xiaodong Zhao, Li Tao, Kang Zou\",\"doi\":\"10.1186/s12964-024-01875-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Androgens are essential hormones for testicular development and the maintenance of male fertility. Environmental factors, stress, aging, and psychological conditions can disrupt androgen production, impacting the androgen signaling pathway and consequently spermatogenesis. Within the testes, testosterone is produced by Leydig cells and acts on Sertoli cells by activating the androgen receptor (AR), which then translocates to the nucleus to function as a transcription factor. Despite clinical correlations between low testosterone levels and diminished sperm quality, the precise mechanism remains unclear.</p><p><strong>Methods: </strong>This study explores the hypothesis that reduced androgen levels impair Sertoli cell function by disrupting AR transcriptional regulation. Using an androgen blockade model with enzalutamide, we investigated the impact of low androgen levels on AR target genes in Sertoli cells through ChIP-seq and RNA-seq assays.</p><p><strong>Results: </strong>Our results reveal that androgen blockage increases AR enrichment on the promoter region of Wee1, promoting Wee1 expression, while decreasing binding to the promoter region of Lfng, inhibiting its expression. Increased WEE1 protein inhibits Sertoli cell proliferation, whereas reduced LFNG affects Notch modification, leading to decreased production of glial cell line-derived neurotrophic factor (GDNF), a key growth factor for spermatogonial stem cell self-renewal.</p><p><strong>Conclusions: </strong>These findings provide new insights into the molecular mechanisms by which low androgen levels interfere with Sertoli cell functions, offering novel perspectives for the clinical treatment of male reproductive disorders.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"498\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01875-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01875-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Androgen blockage impairs proliferation and function of Sertoli cells via Wee1 and Lfng.
Background: Androgens are essential hormones for testicular development and the maintenance of male fertility. Environmental factors, stress, aging, and psychological conditions can disrupt androgen production, impacting the androgen signaling pathway and consequently spermatogenesis. Within the testes, testosterone is produced by Leydig cells and acts on Sertoli cells by activating the androgen receptor (AR), which then translocates to the nucleus to function as a transcription factor. Despite clinical correlations between low testosterone levels and diminished sperm quality, the precise mechanism remains unclear.
Methods: This study explores the hypothesis that reduced androgen levels impair Sertoli cell function by disrupting AR transcriptional regulation. Using an androgen blockade model with enzalutamide, we investigated the impact of low androgen levels on AR target genes in Sertoli cells through ChIP-seq and RNA-seq assays.
Results: Our results reveal that androgen blockage increases AR enrichment on the promoter region of Wee1, promoting Wee1 expression, while decreasing binding to the promoter region of Lfng, inhibiting its expression. Increased WEE1 protein inhibits Sertoli cell proliferation, whereas reduced LFNG affects Notch modification, leading to decreased production of glial cell line-derived neurotrophic factor (GDNF), a key growth factor for spermatogonial stem cell self-renewal.
Conclusions: These findings provide new insights into the molecular mechanisms by which low androgen levels interfere with Sertoli cell functions, offering novel perspectives for the clinical treatment of male reproductive disorders.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.