{"title":"与重型史密斯器械深蹲相比,飞轮运动中较重的负荷能使男性在反向运动跳跃中获得更大的激活后性能提升。","authors":"Jianhua Shi, Bing Yan, Mengjie Yu, Zhe Wang, Yang Wang, Haoyang Liu, Wei Zhang, Olivier Girard","doi":"10.5114/biolsport.2024.139075","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated the effects of post-activation performance enhancement through flywheel exercise with varying inertial loads compared to traditional resistance exercise on countermovement jump performance and muscle recruitment. In a randomized crossover design, 13 trained men completed four main experimental trials after three familiarization sessions. These conditions included a traditional trial consisting of 5 sets of 1 repetition using the Smith machine (SM) squat at 90% 1RM, and three flywheel ergometer trials. Each flywheel protocol consisted of 3 sets of 8 repetitions with 3-minute rest intervals between sets, utilizing one of three inertial loads (0.0465, 0.0784, and 0.1568 kg · m<sup>2</sup> for light, moderate, and heavy, respectively). Participants performed countermovement jumps before (baseline), immediately after (0 minute), and at the fourth (+4 minutes), eighth (+8 minutes), and twelfth (+12 minutes) minute following exercise. Compared to baseline, jump height was higher at +4 minutes for SM squats (p = 0.009). All flywheel conditions exhibited higher jump heights at +4 minutes (p < 0.05), +8 minutes (p < 0.001), and +12 minutes (p < 0.001) compared to baseline. Additionally, moderate and heavy loads resulted in higher jump heights at 0 minute (both p < 0.001). Integrated electromyographic activity values, a proxy for muscle recruitment, were significantly higher for the <i>gluteus maximus</i> muscle at both +8 minutes and +12 minutes for moderate (both p = 0.004) and heavy loads (p ≤ 0.002) compared to SM squats. Overall, flywheel protocols produce greater post-activation performance enhancement, extend the time window for improvement, and recruit more active musculature compared to heavy-load SM squats, particularly with heavier loads acting as a stronger preload stimulus.</p>","PeriodicalId":55365,"journal":{"name":"Biology of Sport","volume":"41 4","pages":"231-240"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475006/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heavier loads in flywheel exercise induce greater post-activation performance enhancement in countermovement jumps compared to heavy Smith machine squats in males.\",\"authors\":\"Jianhua Shi, Bing Yan, Mengjie Yu, Zhe Wang, Yang Wang, Haoyang Liu, Wei Zhang, Olivier Girard\",\"doi\":\"10.5114/biolsport.2024.139075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We evaluated the effects of post-activation performance enhancement through flywheel exercise with varying inertial loads compared to traditional resistance exercise on countermovement jump performance and muscle recruitment. In a randomized crossover design, 13 trained men completed four main experimental trials after three familiarization sessions. These conditions included a traditional trial consisting of 5 sets of 1 repetition using the Smith machine (SM) squat at 90% 1RM, and three flywheel ergometer trials. Each flywheel protocol consisted of 3 sets of 8 repetitions with 3-minute rest intervals between sets, utilizing one of three inertial loads (0.0465, 0.0784, and 0.1568 kg · m<sup>2</sup> for light, moderate, and heavy, respectively). Participants performed countermovement jumps before (baseline), immediately after (0 minute), and at the fourth (+4 minutes), eighth (+8 minutes), and twelfth (+12 minutes) minute following exercise. Compared to baseline, jump height was higher at +4 minutes for SM squats (p = 0.009). All flywheel conditions exhibited higher jump heights at +4 minutes (p < 0.05), +8 minutes (p < 0.001), and +12 minutes (p < 0.001) compared to baseline. Additionally, moderate and heavy loads resulted in higher jump heights at 0 minute (both p < 0.001). Integrated electromyographic activity values, a proxy for muscle recruitment, were significantly higher for the <i>gluteus maximus</i> muscle at both +8 minutes and +12 minutes for moderate (both p = 0.004) and heavy loads (p ≤ 0.002) compared to SM squats. Overall, flywheel protocols produce greater post-activation performance enhancement, extend the time window for improvement, and recruit more active musculature compared to heavy-load SM squats, particularly with heavier loads acting as a stronger preload stimulus.</p>\",\"PeriodicalId\":55365,\"journal\":{\"name\":\"Biology of Sport\",\"volume\":\"41 4\",\"pages\":\"231-240\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475006/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Sport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5114/biolsport.2024.139075\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/biolsport.2024.139075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Heavier loads in flywheel exercise induce greater post-activation performance enhancement in countermovement jumps compared to heavy Smith machine squats in males.
We evaluated the effects of post-activation performance enhancement through flywheel exercise with varying inertial loads compared to traditional resistance exercise on countermovement jump performance and muscle recruitment. In a randomized crossover design, 13 trained men completed four main experimental trials after three familiarization sessions. These conditions included a traditional trial consisting of 5 sets of 1 repetition using the Smith machine (SM) squat at 90% 1RM, and three flywheel ergometer trials. Each flywheel protocol consisted of 3 sets of 8 repetitions with 3-minute rest intervals between sets, utilizing one of three inertial loads (0.0465, 0.0784, and 0.1568 kg · m2 for light, moderate, and heavy, respectively). Participants performed countermovement jumps before (baseline), immediately after (0 minute), and at the fourth (+4 minutes), eighth (+8 minutes), and twelfth (+12 minutes) minute following exercise. Compared to baseline, jump height was higher at +4 minutes for SM squats (p = 0.009). All flywheel conditions exhibited higher jump heights at +4 minutes (p < 0.05), +8 minutes (p < 0.001), and +12 minutes (p < 0.001) compared to baseline. Additionally, moderate and heavy loads resulted in higher jump heights at 0 minute (both p < 0.001). Integrated electromyographic activity values, a proxy for muscle recruitment, were significantly higher for the gluteus maximus muscle at both +8 minutes and +12 minutes for moderate (both p = 0.004) and heavy loads (p ≤ 0.002) compared to SM squats. Overall, flywheel protocols produce greater post-activation performance enhancement, extend the time window for improvement, and recruit more active musculature compared to heavy-load SM squats, particularly with heavier loads acting as a stronger preload stimulus.
期刊介绍:
Biology of Sport is the official journal of the Institute of Sport in Warsaw, Poland, published since 1984.
Biology of Sport is an international scientific peer-reviewed journal, published quarterly in both paper and electronic format. The journal publishes articles concerning basic and applied sciences in sport: sports and exercise physiology, sports immunology and medicine, sports genetics, training and testing, pharmacology, as well as in other biological aspects related to sport. Priority is given to inter-disciplinary papers.