结构模型预测,与宿主同源物相比,蓝藻噬菌体 Ma-LMM01 的 NblA 蛋白与铜绿微囊藻 NIES-298 的藻蓝蛋白之间的结合亲和力要高得多。

IF 5.5 2区 医学 Q1 VIROLOGY Virus Evolution Pub Date : 2024-09-26 eCollection Date: 2024-01-01 DOI:10.1093/ve/veae082
Isaac Meza-Padilla, Brendan J McConkey, Jozef I Nissimov
{"title":"结构模型预测,与宿主同源物相比,蓝藻噬菌体 Ma-LMM01 的 NblA 蛋白与铜绿微囊藻 NIES-298 的藻蓝蛋白之间的结合亲和力要高得多。","authors":"Isaac Meza-Padilla, Brendan J McConkey, Jozef I Nissimov","doi":"10.1093/ve/veae082","DOIUrl":null,"url":null,"abstract":"<p><p>Horizontal gene transfer events between viruses and hosts are widespread across the virosphere. In cyanophage-host systems, such events often involve the transfer of genes involved in photosynthetic processes. The genome of the lytic cyanophage Ma-LMM01 infecting the toxic, bloom-forming, freshwater <i>Microcystis aeruginosa</i> NIES-298 contains a homolog of the <i>non-bleaching A</i> (<i>nblA</i>) gene, which was probably transferred from a cyanobacterial host. The function of the NblA protein is to disassemble phycobilisomes, cyanobacterial light-harvesting complexes that can comprise up to half of the cellular soluble protein content. NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high-light intensities and increases the intracellular nitrogen pool under nutrient limitation. NblA has previously been shown to interact with phycocyanin, one of the main components of phycobilisomes. Using structural modeling and protein-protein docking, we show that the NblA dimer of Ma-LMM01 is predicted to have a significantly higher binding affinity for <i>M. aeruginosa</i> NIES-298 phycocyanin (αβ)<sub>6</sub> hexamers, compared to the host homolog. Protein-protein docking suggests that the viral NblA structural model is able to bind deeper into the phycocyanin groove. The main structural difference between the virus and host NblA appears to be an additional α-helix near the N-terminus of the viral NblA, which interacts with the inside of the phycocyanin groove and could thus be considered partly responsible for this deeper binding. Interestingly, phylogenetic analyses indicate that this longer <i>nblA</i> was probably acquired from a different <i>Microcystis</i> host. Based on infection experiments and previous findings, we propose that a higher binding affinity of the viral NblA to the host phycocyanin may represent a selective advantage for the virus, whose infection cycle requires an increased phycobilisome degradation rate that is not fulfilled by the NblA of the host.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae082"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural models predict a significantly higher binding affinity between the NblA protein of cyanophage Ma-LMM01 and the phycocyanin of <i>Microcystis aeruginosa</i> NIES-298 compared to the host homolog.\",\"authors\":\"Isaac Meza-Padilla, Brendan J McConkey, Jozef I Nissimov\",\"doi\":\"10.1093/ve/veae082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Horizontal gene transfer events between viruses and hosts are widespread across the virosphere. In cyanophage-host systems, such events often involve the transfer of genes involved in photosynthetic processes. The genome of the lytic cyanophage Ma-LMM01 infecting the toxic, bloom-forming, freshwater <i>Microcystis aeruginosa</i> NIES-298 contains a homolog of the <i>non-bleaching A</i> (<i>nblA</i>) gene, which was probably transferred from a cyanobacterial host. The function of the NblA protein is to disassemble phycobilisomes, cyanobacterial light-harvesting complexes that can comprise up to half of the cellular soluble protein content. NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high-light intensities and increases the intracellular nitrogen pool under nutrient limitation. NblA has previously been shown to interact with phycocyanin, one of the main components of phycobilisomes. Using structural modeling and protein-protein docking, we show that the NblA dimer of Ma-LMM01 is predicted to have a significantly higher binding affinity for <i>M. aeruginosa</i> NIES-298 phycocyanin (αβ)<sub>6</sub> hexamers, compared to the host homolog. Protein-protein docking suggests that the viral NblA structural model is able to bind deeper into the phycocyanin groove. The main structural difference between the virus and host NblA appears to be an additional α-helix near the N-terminus of the viral NblA, which interacts with the inside of the phycocyanin groove and could thus be considered partly responsible for this deeper binding. Interestingly, phylogenetic analyses indicate that this longer <i>nblA</i> was probably acquired from a different <i>Microcystis</i> host. Based on infection experiments and previous findings, we propose that a higher binding affinity of the viral NblA to the host phycocyanin may represent a selective advantage for the virus, whose infection cycle requires an increased phycobilisome degradation rate that is not fulfilled by the NblA of the host.</p>\",\"PeriodicalId\":56026,\"journal\":{\"name\":\"Virus Evolution\",\"volume\":\"10 1\",\"pages\":\"veae082\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Evolution\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ve/veae082\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veae082","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

病毒与宿主之间的横向基因转移事件在整个病毒界十分普遍。在噬菌体蓝藻宿主系统中,此类事件往往涉及光合作用过程中基因的转移。感染有毒、会形成藻华的淡水铜绿微囊藻(Microcystis aeruginosa NIES-298)的裂解型噬菌体 Ma-LMM01 的基因组中含有非漂白 A(nblA)基因的同源物,该基因可能是从蓝藻宿主那里转移过来的。NblA 蛋白的功能是分解蓝藻的采光复合体--藻体,藻体可占细胞可溶性蛋白质含量的一半。因此,NblA 在蓝藻中扮演着重要的双重角色:既能保护细胞免受高光照强度的影响,又能在营养限制条件下增加细胞内的氮库。NblA 以前曾与藻蓝体的主要成分之一藻蓝蛋白相互作用。通过结构建模和蛋白质-蛋白质对接,我们发现与宿主同源物相比,Ma-LMM01的NblA二聚体与铜绿微囊藻NIES-298藻蓝蛋白(αβ)6六聚体的结合亲和力明显更高。蛋白质-蛋白质对接表明,病毒 NblA 结构模型能够更深地结合到藻蓝蛋白沟中。病毒 NblA 与宿主 NblA 在结构上的主要区别似乎在于病毒 NblA 的 N 端附近多了一个 α 螺旋,它与藻蓝蛋白槽的内侧相互作用,因此可以认为是造成这种更深结合的部分原因。有趣的是,系统发育分析表明,这种较长的 nblA 可能是从不同的微囊藻宿主那里获得的。根据感染实验和之前的研究结果,我们认为病毒 NblA 与宿主藻蓝蛋白更高的结合亲和力可能代表了病毒的一种选择性优势,因为病毒的感染周期需要提高藻蓝体的降解率,而宿主的 NblA 无法满足这一要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural models predict a significantly higher binding affinity between the NblA protein of cyanophage Ma-LMM01 and the phycocyanin of Microcystis aeruginosa NIES-298 compared to the host homolog.

Horizontal gene transfer events between viruses and hosts are widespread across the virosphere. In cyanophage-host systems, such events often involve the transfer of genes involved in photosynthetic processes. The genome of the lytic cyanophage Ma-LMM01 infecting the toxic, bloom-forming, freshwater Microcystis aeruginosa NIES-298 contains a homolog of the non-bleaching A (nblA) gene, which was probably transferred from a cyanobacterial host. The function of the NblA protein is to disassemble phycobilisomes, cyanobacterial light-harvesting complexes that can comprise up to half of the cellular soluble protein content. NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high-light intensities and increases the intracellular nitrogen pool under nutrient limitation. NblA has previously been shown to interact with phycocyanin, one of the main components of phycobilisomes. Using structural modeling and protein-protein docking, we show that the NblA dimer of Ma-LMM01 is predicted to have a significantly higher binding affinity for M. aeruginosa NIES-298 phycocyanin (αβ)6 hexamers, compared to the host homolog. Protein-protein docking suggests that the viral NblA structural model is able to bind deeper into the phycocyanin groove. The main structural difference between the virus and host NblA appears to be an additional α-helix near the N-terminus of the viral NblA, which interacts with the inside of the phycocyanin groove and could thus be considered partly responsible for this deeper binding. Interestingly, phylogenetic analyses indicate that this longer nblA was probably acquired from a different Microcystis host. Based on infection experiments and previous findings, we propose that a higher binding affinity of the viral NblA to the host phycocyanin may represent a selective advantage for the virus, whose infection cycle requires an increased phycobilisome degradation rate that is not fulfilled by the NblA of the host.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virus Evolution
Virus Evolution Immunology and Microbiology-Microbiology
CiteScore
10.50
自引率
5.70%
发文量
108
审稿时长
14 weeks
期刊介绍: Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology. The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.
期刊最新文献
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Community-level variability in Bronx COVID-19 hospitalizations associated with differing population immunity during the second year of the pandemic. A phylogenetics and variant calling pipeline to support SARS-CoV-2 genomic epidemiology in the UK. Genomic epidemiology reveals the variation and transmission properties of SARS-CoV-2 in a single-source community outbreak.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1