Justin L. Lee , Platon V. Yushchenko , Chatmongkon Suwannapoom , Parinya Pawangkhanant , L. Lee Grismer , Tan Van Nguyen , V. Deepak , Surya Narayanan , Sandeep Das , Thy Neang , H.T. Lalremsanga , Jian-Huan Yang , Daniel Jablonski , Mustafa Erkaya , Gernot Vogel , Aaron M. Bauer , Nikolay A. Poyarkov
{"title":"亚洲库克里蛇(Oligodon Fitzinger,1826 年)的多基因系统发育:将第二大蛇类辐射(爬行纲:有鳞目:眼镜蛇科)的刀刃磨得更锋利。","authors":"Justin L. Lee , Platon V. Yushchenko , Chatmongkon Suwannapoom , Parinya Pawangkhanant , L. Lee Grismer , Tan Van Nguyen , V. Deepak , Surya Narayanan , Sandeep Das , Thy Neang , H.T. Lalremsanga , Jian-Huan Yang , Daniel Jablonski , Mustafa Erkaya , Gernot Vogel , Aaron M. Bauer , Nikolay A. Poyarkov","doi":"10.1016/j.ympev.2024.108215","DOIUrl":null,"url":null,"abstract":"<div><div>With 90 recognized species, kukri snakes in the genus <em>Oligodon</em> Fitzinger constitute the second largest snake radiation in the world. <em>Oligodon</em> species are collectively distributed across the Asian continent and possess several ecological and morphological attributes that are unique amongst other snakes. Despite their high levels of species richness, evolutionary relationships within <em>Oligodon</em> are poorly understood due to a limited number of samples and genetic markers available in earlier phylogenies. In this study, we assembled the largest molecular dataset of <em>Oligodon</em> to date, which we use to assess the systematics and biogeography of the entire genus. Based on a combination of maximum likelihood and Bayesian phylogenies using fragments of three mitochondrial genes (12 s, 16 s, CytB) and three nuclear genes (Rag1, C-mos, BDNF), we identify eight deeply divergent clades within <em>Oligodon</em>, of which only two correspond with species groupings that were recognized by previous morphological classifications. Four species delimitation methods employed on the mitochondrial portion of the dataset resulted in dramatically divergent estimations of molecular operational taxonomic units (mOTUs). When combined, all four methods support the existence of unrecognized species-level lineages, but also indicate that several other <em>Oligodon</em> species are poorly differentiated genetically and require additional integrative taxonomic research to properly resolve. Based on divergence dating, we demonstrate that <em>Oligodon</em> began to diversify during the early Neogene and hypothesize that the most recent common ancestor of the genus originated in mainland Southeast Asia. We conclude by recognizing eight phylogenetically defined species groups and identify sampling gaps that require further investigation once new data becomes available. This study contributes to a greater understanding of snake evolution on the Asian continent and acts as a baseline for future studies of this speciose genus.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108215"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-gene phylogeny of the Asian kukri snakes (Oligodon Fitzinger, 1826): Sharpening the blade of the second largest serpent radiation (Reptilia: Squamata: Colubridae)\",\"authors\":\"Justin L. Lee , Platon V. Yushchenko , Chatmongkon Suwannapoom , Parinya Pawangkhanant , L. Lee Grismer , Tan Van Nguyen , V. Deepak , Surya Narayanan , Sandeep Das , Thy Neang , H.T. Lalremsanga , Jian-Huan Yang , Daniel Jablonski , Mustafa Erkaya , Gernot Vogel , Aaron M. Bauer , Nikolay A. Poyarkov\",\"doi\":\"10.1016/j.ympev.2024.108215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With 90 recognized species, kukri snakes in the genus <em>Oligodon</em> Fitzinger constitute the second largest snake radiation in the world. <em>Oligodon</em> species are collectively distributed across the Asian continent and possess several ecological and morphological attributes that are unique amongst other snakes. Despite their high levels of species richness, evolutionary relationships within <em>Oligodon</em> are poorly understood due to a limited number of samples and genetic markers available in earlier phylogenies. In this study, we assembled the largest molecular dataset of <em>Oligodon</em> to date, which we use to assess the systematics and biogeography of the entire genus. Based on a combination of maximum likelihood and Bayesian phylogenies using fragments of three mitochondrial genes (12 s, 16 s, CytB) and three nuclear genes (Rag1, C-mos, BDNF), we identify eight deeply divergent clades within <em>Oligodon</em>, of which only two correspond with species groupings that were recognized by previous morphological classifications. Four species delimitation methods employed on the mitochondrial portion of the dataset resulted in dramatically divergent estimations of molecular operational taxonomic units (mOTUs). When combined, all four methods support the existence of unrecognized species-level lineages, but also indicate that several other <em>Oligodon</em> species are poorly differentiated genetically and require additional integrative taxonomic research to properly resolve. Based on divergence dating, we demonstrate that <em>Oligodon</em> began to diversify during the early Neogene and hypothesize that the most recent common ancestor of the genus originated in mainland Southeast Asia. We conclude by recognizing eight phylogenetically defined species groups and identify sampling gaps that require further investigation once new data becomes available. This study contributes to a greater understanding of snake evolution on the Asian continent and acts as a baseline for future studies of this speciose genus.</div></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":\"201 \",\"pages\":\"Article 108215\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324002070\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324002070","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A multi-gene phylogeny of the Asian kukri snakes (Oligodon Fitzinger, 1826): Sharpening the blade of the second largest serpent radiation (Reptilia: Squamata: Colubridae)
With 90 recognized species, kukri snakes in the genus Oligodon Fitzinger constitute the second largest snake radiation in the world. Oligodon species are collectively distributed across the Asian continent and possess several ecological and morphological attributes that are unique amongst other snakes. Despite their high levels of species richness, evolutionary relationships within Oligodon are poorly understood due to a limited number of samples and genetic markers available in earlier phylogenies. In this study, we assembled the largest molecular dataset of Oligodon to date, which we use to assess the systematics and biogeography of the entire genus. Based on a combination of maximum likelihood and Bayesian phylogenies using fragments of three mitochondrial genes (12 s, 16 s, CytB) and three nuclear genes (Rag1, C-mos, BDNF), we identify eight deeply divergent clades within Oligodon, of which only two correspond with species groupings that were recognized by previous morphological classifications. Four species delimitation methods employed on the mitochondrial portion of the dataset resulted in dramatically divergent estimations of molecular operational taxonomic units (mOTUs). When combined, all four methods support the existence of unrecognized species-level lineages, but also indicate that several other Oligodon species are poorly differentiated genetically and require additional integrative taxonomic research to properly resolve. Based on divergence dating, we demonstrate that Oligodon began to diversify during the early Neogene and hypothesize that the most recent common ancestor of the genus originated in mainland Southeast Asia. We conclude by recognizing eight phylogenetically defined species groups and identify sampling gaps that require further investigation once new data becomes available. This study contributes to a greater understanding of snake evolution on the Asian continent and acts as a baseline for future studies of this speciose genus.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.