Anderson Lepeco , Michael G. Branstetter , Gabriel A.R. Melo , Felipe V. Freitas , Kerrigan B. Tobin , Jenny Gan , Jeremy Jensen , Eduardo A.B. Almeida
{"title":"无刺蜜蜂(Apidae, Meliponini)全球进化关系的系统发生学见解。","authors":"Anderson Lepeco , Michael G. Branstetter , Gabriel A.R. Melo , Felipe V. Freitas , Kerrigan B. Tobin , Jenny Gan , Jeremy Jensen , Eduardo A.B. Almeida","doi":"10.1016/j.ympev.2024.108219","DOIUrl":null,"url":null,"abstract":"<div><div>Stingless bees (tribe Meliponini) are remarkable for their characteristically large social colonies, their capacity to produce honey and other useful products, and their morphological and behavioral diversity. They have a disjunct pan-tropical distribution, primarily occurring in warm and humid environments in the Neotropical, Afrotropical, and Indo-Australasian regions. Even though phylogenetic hypotheses have been proposed for Meliponini based on morphology and molecular data, many questions are still unsolved regarding the evolutionary relationships and systematics of the tribe. In this contribution, we present a large phylogenomic dataset comprising over 2500 ultra-conserved element (UCE) loci sequenced for 153 species of Meliponini, representing all known genera of stingless bees. The genera <em>Camargoia</em>, <em>Paratrigonoides</em>, <em>Plectoplebeia, Cleptotrigona</em>, <em>Ebaiotrigona</em>, <em>Papuatrigona</em>, <em>Pariotrigona</em>, <em>Platytrigona</em>, and <em>Sahulotrigona</em> were included in molecular phylogenetic analyses for the first time. Concatenated and species-tree analyses were performed using different partitioning strategies and summary methods. We performed gene-genealogy interrogation (GGI) on several recalcitrant nodes to resolve discordances among recovered tree topologies. Results were mostly consistent among analyses, recovering three main lineages of Meliponini congruent with the biogeographic domains to which they are associated. Within major clades, discordances were found in relation to previous works. The genus <em>Frieseomelitta</em> was recovered as paraphyletic in relation to <em>Trichotrigona</em>, and the genus <em>Lepidotrigona</em> was revealed to be composed of two independent lineages. Even though concatenated and weighted ASTRAL analyses were mostly effective in recovering the relationships favored by GGI, they retrieved different results in relation to the phylogenetic placements of <em>Oxytrigona</em> and <em>Cephalotrigona</em>. The most favored hypothesis in GGI analyses was not found in any other analyses, being more congruent with morphological evidence and highlighting the relevance of exploring the support given to alternative hypotheses through topological tests. Recent advances in our capacity to generate molecular sequences from old specimens using modern sequencing methods allowed for unparalleled sampling across genera, yielding a backbone for the phylogenetic relationships of stingless bees, which will further investigations into their systematics and evolution.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenomic insights into the worldwide evolutionary relationships of the stingless bees (Apidae, Meliponini)\",\"authors\":\"Anderson Lepeco , Michael G. Branstetter , Gabriel A.R. Melo , Felipe V. Freitas , Kerrigan B. Tobin , Jenny Gan , Jeremy Jensen , Eduardo A.B. Almeida\",\"doi\":\"10.1016/j.ympev.2024.108219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stingless bees (tribe Meliponini) are remarkable for their characteristically large social colonies, their capacity to produce honey and other useful products, and their morphological and behavioral diversity. They have a disjunct pan-tropical distribution, primarily occurring in warm and humid environments in the Neotropical, Afrotropical, and Indo-Australasian regions. Even though phylogenetic hypotheses have been proposed for Meliponini based on morphology and molecular data, many questions are still unsolved regarding the evolutionary relationships and systematics of the tribe. In this contribution, we present a large phylogenomic dataset comprising over 2500 ultra-conserved element (UCE) loci sequenced for 153 species of Meliponini, representing all known genera of stingless bees. The genera <em>Camargoia</em>, <em>Paratrigonoides</em>, <em>Plectoplebeia, Cleptotrigona</em>, <em>Ebaiotrigona</em>, <em>Papuatrigona</em>, <em>Pariotrigona</em>, <em>Platytrigona</em>, and <em>Sahulotrigona</em> were included in molecular phylogenetic analyses for the first time. Concatenated and species-tree analyses were performed using different partitioning strategies and summary methods. We performed gene-genealogy interrogation (GGI) on several recalcitrant nodes to resolve discordances among recovered tree topologies. Results were mostly consistent among analyses, recovering three main lineages of Meliponini congruent with the biogeographic domains to which they are associated. Within major clades, discordances were found in relation to previous works. The genus <em>Frieseomelitta</em> was recovered as paraphyletic in relation to <em>Trichotrigona</em>, and the genus <em>Lepidotrigona</em> was revealed to be composed of two independent lineages. Even though concatenated and weighted ASTRAL analyses were mostly effective in recovering the relationships favored by GGI, they retrieved different results in relation to the phylogenetic placements of <em>Oxytrigona</em> and <em>Cephalotrigona</em>. The most favored hypothesis in GGI analyses was not found in any other analyses, being more congruent with morphological evidence and highlighting the relevance of exploring the support given to alternative hypotheses through topological tests. Recent advances in our capacity to generate molecular sequences from old specimens using modern sequencing methods allowed for unparalleled sampling across genera, yielding a backbone for the phylogenetic relationships of stingless bees, which will further investigations into their systematics and evolution.</div></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324002112\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324002112","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phylogenomic insights into the worldwide evolutionary relationships of the stingless bees (Apidae, Meliponini)
Stingless bees (tribe Meliponini) are remarkable for their characteristically large social colonies, their capacity to produce honey and other useful products, and their morphological and behavioral diversity. They have a disjunct pan-tropical distribution, primarily occurring in warm and humid environments in the Neotropical, Afrotropical, and Indo-Australasian regions. Even though phylogenetic hypotheses have been proposed for Meliponini based on morphology and molecular data, many questions are still unsolved regarding the evolutionary relationships and systematics of the tribe. In this contribution, we present a large phylogenomic dataset comprising over 2500 ultra-conserved element (UCE) loci sequenced for 153 species of Meliponini, representing all known genera of stingless bees. The genera Camargoia, Paratrigonoides, Plectoplebeia, Cleptotrigona, Ebaiotrigona, Papuatrigona, Pariotrigona, Platytrigona, and Sahulotrigona were included in molecular phylogenetic analyses for the first time. Concatenated and species-tree analyses were performed using different partitioning strategies and summary methods. We performed gene-genealogy interrogation (GGI) on several recalcitrant nodes to resolve discordances among recovered tree topologies. Results were mostly consistent among analyses, recovering three main lineages of Meliponini congruent with the biogeographic domains to which they are associated. Within major clades, discordances were found in relation to previous works. The genus Frieseomelitta was recovered as paraphyletic in relation to Trichotrigona, and the genus Lepidotrigona was revealed to be composed of two independent lineages. Even though concatenated and weighted ASTRAL analyses were mostly effective in recovering the relationships favored by GGI, they retrieved different results in relation to the phylogenetic placements of Oxytrigona and Cephalotrigona. The most favored hypothesis in GGI analyses was not found in any other analyses, being more congruent with morphological evidence and highlighting the relevance of exploring the support given to alternative hypotheses through topological tests. Recent advances in our capacity to generate molecular sequences from old specimens using modern sequencing methods allowed for unparalleled sampling across genera, yielding a backbone for the phylogenetic relationships of stingless bees, which will further investigations into their systematics and evolution.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.