痴呆症患者从社区向长期住院护理过渡的预测算法的推导和验证--一项回顾性队列研究。

PLOS digital health Pub Date : 2024-10-18 eCollection Date: 2024-10-01 DOI:10.1371/journal.pdig.0000441
Wenshan Li, Luke Turcotte, Amy T Hsu, Robert Talarico, Danial Qureshi, Colleen Webber, Steven Hawken, Peter Tanuseputro, Douglas G Manuel, Greg Huyer
{"title":"痴呆症患者从社区向长期住院护理过渡的预测算法的推导和验证--一项回顾性队列研究。","authors":"Wenshan Li, Luke Turcotte, Amy T Hsu, Robert Talarico, Danial Qureshi, Colleen Webber, Steven Hawken, Peter Tanuseputro, Douglas G Manuel, Greg Huyer","doi":"10.1371/journal.pdig.0000441","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate a model to predict time-to-LTC admissions among individuals with dementia.</p><p><strong>Design: </strong>Population-based retrospective cohort study using health administrative data.</p><p><strong>Setting and participants: </strong>Community-dwelling older adults (65+) in Ontario living with dementia and assessed with the Resident Assessment Instrument for Home Care (RAI-HC) between April 1, 2010 and March 31, 2017.</p><p><strong>Methods: </strong>Individuals in the derivation cohort (n = 95,813; assessed before March 31, 2015) were followed for up to 360 days after the index RAI-HC assessment for admission into LTC. We used a multivariable Fine Gray sub-distribution hazard model to predict the cumulative incidence of LTC entry while accounting for all-cause mortality as a competing risk. The model was validated in 34,038 older adults with dementia with an index RAI-HC assessment between April 1, 2015 and March 31, 2017.</p><p><strong>Results: </strong>Within one year of a RAI-HC assessment, 35,513 (37.1%) individuals in the derivation cohort and 10,735 (31.5%) in the validation cohort entered LTC. Our algorithm was well-calibrated (Emax = 0.119, ICIavg = 0.057) and achieved a c-statistic of 0.707 (95% confidence interval: 0.703-0.712) in the validation cohort.</p><p><strong>Conclusions and implications: </strong>We developed an algorithm to predict time to LTC entry among individuals living with dementia. This tool can inform care planning for individuals with dementia and their family caregivers.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 10","pages":"e0000441"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Derivation and validation of an algorithm to predict transitions from community to residential long-term care among persons with dementia-A retrospective cohort study.\",\"authors\":\"Wenshan Li, Luke Turcotte, Amy T Hsu, Robert Talarico, Danial Qureshi, Colleen Webber, Steven Hawken, Peter Tanuseputro, Douglas G Manuel, Greg Huyer\",\"doi\":\"10.1371/journal.pdig.0000441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop and validate a model to predict time-to-LTC admissions among individuals with dementia.</p><p><strong>Design: </strong>Population-based retrospective cohort study using health administrative data.</p><p><strong>Setting and participants: </strong>Community-dwelling older adults (65+) in Ontario living with dementia and assessed with the Resident Assessment Instrument for Home Care (RAI-HC) between April 1, 2010 and March 31, 2017.</p><p><strong>Methods: </strong>Individuals in the derivation cohort (n = 95,813; assessed before March 31, 2015) were followed for up to 360 days after the index RAI-HC assessment for admission into LTC. We used a multivariable Fine Gray sub-distribution hazard model to predict the cumulative incidence of LTC entry while accounting for all-cause mortality as a competing risk. The model was validated in 34,038 older adults with dementia with an index RAI-HC assessment between April 1, 2015 and March 31, 2017.</p><p><strong>Results: </strong>Within one year of a RAI-HC assessment, 35,513 (37.1%) individuals in the derivation cohort and 10,735 (31.5%) in the validation cohort entered LTC. Our algorithm was well-calibrated (Emax = 0.119, ICIavg = 0.057) and achieved a c-statistic of 0.707 (95% confidence interval: 0.703-0.712) in the validation cohort.</p><p><strong>Conclusions and implications: </strong>We developed an algorithm to predict time to LTC entry among individuals living with dementia. This tool can inform care planning for individuals with dementia and their family caregivers.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"3 10\",\"pages\":\"e0000441\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的开发并验证一个模型,以预测痴呆症患者入住长期护理中心的时间:设计:基于人口的回顾性队列研究,使用健康管理数据:2010年4月1日至2017年3月31日期间,安大略省居住在社区的患有痴呆症的老年人(65岁以上),并使用家庭护理居民评估工具(RAI-HC)进行评估:对衍生队列(n = 95,813;2015 年 3 月 31 日之前评估)中的个人进行了长达 360 天的随访,随访时间为 RAI-HC 评估指数进入 LTC 后的 360 天。我们使用了一个多变量 Fine Gray 子分布危险模型来预测进入 LTC 的累积发病率,同时将全因死亡率作为竞争风险加以考虑。该模型在2015年4月1日至2017年3月31日期间进行了RAI-HC指数评估的34038名老年痴呆症患者中进行了验证:在RAI-HC评估后的一年内,推导队列中有35513人(37.1%)和验证队列中有10735人(31.5%)进入了LTC。我们的算法校准良好(Emax = 0.119,ICIavg = 0.057),验证队列中的 c 统计量为 0.707(95% 置信区间:0.703-0.712):我们开发了一种算法来预测痴呆症患者进入长期护理中心的时间。该工具可为痴呆症患者及其家庭护理者的护理规划提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivation and validation of an algorithm to predict transitions from community to residential long-term care among persons with dementia-A retrospective cohort study.

Objectives: To develop and validate a model to predict time-to-LTC admissions among individuals with dementia.

Design: Population-based retrospective cohort study using health administrative data.

Setting and participants: Community-dwelling older adults (65+) in Ontario living with dementia and assessed with the Resident Assessment Instrument for Home Care (RAI-HC) between April 1, 2010 and March 31, 2017.

Methods: Individuals in the derivation cohort (n = 95,813; assessed before March 31, 2015) were followed for up to 360 days after the index RAI-HC assessment for admission into LTC. We used a multivariable Fine Gray sub-distribution hazard model to predict the cumulative incidence of LTC entry while accounting for all-cause mortality as a competing risk. The model was validated in 34,038 older adults with dementia with an index RAI-HC assessment between April 1, 2015 and March 31, 2017.

Results: Within one year of a RAI-HC assessment, 35,513 (37.1%) individuals in the derivation cohort and 10,735 (31.5%) in the validation cohort entered LTC. Our algorithm was well-calibrated (Emax = 0.119, ICIavg = 0.057) and achieved a c-statistic of 0.707 (95% confidence interval: 0.703-0.712) in the validation cohort.

Conclusions and implications: We developed an algorithm to predict time to LTC entry among individuals living with dementia. This tool can inform care planning for individuals with dementia and their family caregivers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities to design better computer vison-assisted food diaries to support individuals and experts in dietary assessment: An observation and interview study with nutrition experts. Deep learning-based screening for locomotive syndrome using single-camera walking video: Development and validation study. A recurrent neural network and parallel hidden Markov model algorithm to segment and detect heart murmurs in phonocardiograms. On-site electronic consent in pediatrics using generic Informed Consent Service (gICS): Creating a specialized setup and collecting consent data. A feature-based qualitative assessment of smoking cessation mobile applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1