自动融合多模态电子健康记录,实现更好的医疗预测。

Suhan Cui, Jiaqi Wang, Yuan Zhong, Han Liu, Ting Wang, Fenglong Ma
{"title":"自动融合多模态电子健康记录,实现更好的医疗预测。","authors":"Suhan Cui, Jiaqi Wang, Yuan Zhong, Han Liu, Ting Wang, Fenglong Ma","doi":"10.1137/1.9781611978032.41","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread adoption of Electronic Health Record (EHR) systems in healthcare institutes has generated vast amounts of medical data, offering significant opportunities for improving healthcare services through deep learning techniques. However, the complex and diverse modalities and feature structures in real-world EHR data pose great challenges for deep learning model design. To address the multi-modality challenge in EHR data, current approaches primarily rely on hand-crafted model architectures based on intuition and empirical experiences, leading to sub-optimal model architectures and limited performance. Therefore, to automate the process of model design for mining EHR data, we propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies. We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework not only achieves significant performance improvement over existing state-of-the-art methods but also discovers meaningful network architectures effectively.</p>","PeriodicalId":74533,"journal":{"name":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","volume":"2024 ","pages":"361-369"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469647/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Fusion of Multimodal Electronic Health Records for Better Medical Predictions.\",\"authors\":\"Suhan Cui, Jiaqi Wang, Yuan Zhong, Han Liu, Ting Wang, Fenglong Ma\",\"doi\":\"10.1137/1.9781611978032.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread adoption of Electronic Health Record (EHR) systems in healthcare institutes has generated vast amounts of medical data, offering significant opportunities for improving healthcare services through deep learning techniques. However, the complex and diverse modalities and feature structures in real-world EHR data pose great challenges for deep learning model design. To address the multi-modality challenge in EHR data, current approaches primarily rely on hand-crafted model architectures based on intuition and empirical experiences, leading to sub-optimal model architectures and limited performance. Therefore, to automate the process of model design for mining EHR data, we propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies. We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework not only achieves significant performance improvement over existing state-of-the-art methods but also discovers meaningful network architectures effectively.</p>\",\"PeriodicalId\":74533,\"journal\":{\"name\":\"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining\",\"volume\":\"2024 \",\"pages\":\"361-369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611978032.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611978032.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗机构广泛采用电子病历(EHR)系统产生了大量医疗数据,为通过深度学习技术改善医疗服务提供了重要机遇。然而,现实世界中的电子病历数据具有复杂多样的模式和特征结构,这给深度学习模型的设计带来了巨大挑战。为了应对电子病历数据中的多模态挑战,目前的方法主要依赖于基于直觉和经验的手工创建模型架构,这导致了次优模型架构和有限的性能。因此,为了使挖掘电子病历数据的模型设计过程自动化,我们提出了一种名为 AutoFM 的新型神经架构搜索(NAS)框架,它可以自动搜索最佳模型架构,以编码不同的输入模式和融合策略。我们在真实世界的多模态电子病历数据和预测任务中进行了深入实验,结果表明我们的框架不仅比现有的最先进方法实现了显著的性能提升,而且还能有效地发现有意义的网络架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Fusion of Multimodal Electronic Health Records for Better Medical Predictions.

The widespread adoption of Electronic Health Record (EHR) systems in healthcare institutes has generated vast amounts of medical data, offering significant opportunities for improving healthcare services through deep learning techniques. However, the complex and diverse modalities and feature structures in real-world EHR data pose great challenges for deep learning model design. To address the multi-modality challenge in EHR data, current approaches primarily rely on hand-crafted model architectures based on intuition and empirical experiences, leading to sub-optimal model architectures and limited performance. Therefore, to automate the process of model design for mining EHR data, we propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies. We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework not only achieves significant performance improvement over existing state-of-the-art methods but also discovers meaningful network architectures effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Fusion of Multimodal Electronic Health Records for Better Medical Predictions. MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data Augmentation. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery. Harmonic Alignment. GRIA: Graphical Regularization for Integrative Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1