Nicole Bechmann, Jared S Rosenblum, Ali S Alzahrani
{"title":"关于 HIF-2α 在嗜铬细胞瘤和副神经节瘤的发病机制和综合征表现中的作用的当前观点。","authors":"Nicole Bechmann, Jared S Rosenblum, Ali S Alzahrani","doi":"10.1016/j.beem.2024.101955","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic variants (PVs) in EPAS1, which encodes hypoxia-inducible factor-2α (HIF-2α), could be the underlying genetic cause of about 3%-6% of pheochromocytoma and paragangliomas (PPGLs). EPAS1-related PPGLs may occur as isolated tumors or as part of Pacak-Zhuang Syndrome (PZS) with two or more of a triad of PPGL, polycythemia, and somatostatinoma. HIF-2α plays a critical role in the regulation of the cellular hypoxia pathway. When a gain-of-function PV is acquired, HIF-2α evades steady-state hydroxylation by the prolyl hydroxylase type 2 (PHD2), which accelerates von Hippel-Lindau (VHL)-mediated proteasomal degradation. In this situation, HIF-2α is stabilized and can translocate to the nucleus, inducing the expression of several genes involved in tumorigenesis. This leads to the development of PPGL and other manifestations of PZS. EPAS1-related PPGLs usually occur in the second or third decade of life, more frequently in females, and are usually multiple, adrenal and extra-adrenal, and norepinephrine-secreting. In addition, these tumors carry an increased metastatic potential and have been reported with metastatic disease in up to 30% of cases. While polycythemia is fairly common in PZS, somatostatinomas are rare. It has been suggested that the character of the acquired PV in EPAS1, which affects its binding to PHD2, correlates with certain phenotypes in PZS. PVs in EPAS1 that have been found in related sporadic PPGLs have also been associated with hypoxic conditions including cyanotic congenital heart disease, hemoglobinopathies and high altitude. Understanding the hypoxia pathway and its role in the pathogenesis of PPGL may open a new avenue for developing effective therapies for these tumors. Indeed, one of these therapies is Belzutifan, a HIF-2α inhibitor that is being tested in the treatment of metastatic PPGLs.</p>","PeriodicalId":93894,"journal":{"name":"Best practice & research. Clinical endocrinology & metabolism","volume":" ","pages":"101955"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current views on the role of HIF-2α in the pathogenesis and syndromic presentation of pheochromocytoma and paraganglioma.\",\"authors\":\"Nicole Bechmann, Jared S Rosenblum, Ali S Alzahrani\",\"doi\":\"10.1016/j.beem.2024.101955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic variants (PVs) in EPAS1, which encodes hypoxia-inducible factor-2α (HIF-2α), could be the underlying genetic cause of about 3%-6% of pheochromocytoma and paragangliomas (PPGLs). EPAS1-related PPGLs may occur as isolated tumors or as part of Pacak-Zhuang Syndrome (PZS) with two or more of a triad of PPGL, polycythemia, and somatostatinoma. HIF-2α plays a critical role in the regulation of the cellular hypoxia pathway. When a gain-of-function PV is acquired, HIF-2α evades steady-state hydroxylation by the prolyl hydroxylase type 2 (PHD2), which accelerates von Hippel-Lindau (VHL)-mediated proteasomal degradation. In this situation, HIF-2α is stabilized and can translocate to the nucleus, inducing the expression of several genes involved in tumorigenesis. This leads to the development of PPGL and other manifestations of PZS. EPAS1-related PPGLs usually occur in the second or third decade of life, more frequently in females, and are usually multiple, adrenal and extra-adrenal, and norepinephrine-secreting. In addition, these tumors carry an increased metastatic potential and have been reported with metastatic disease in up to 30% of cases. While polycythemia is fairly common in PZS, somatostatinomas are rare. It has been suggested that the character of the acquired PV in EPAS1, which affects its binding to PHD2, correlates with certain phenotypes in PZS. PVs in EPAS1 that have been found in related sporadic PPGLs have also been associated with hypoxic conditions including cyanotic congenital heart disease, hemoglobinopathies and high altitude. Understanding the hypoxia pathway and its role in the pathogenesis of PPGL may open a new avenue for developing effective therapies for these tumors. Indeed, one of these therapies is Belzutifan, a HIF-2α inhibitor that is being tested in the treatment of metastatic PPGLs.</p>\",\"PeriodicalId\":93894,\"journal\":{\"name\":\"Best practice & research. Clinical endocrinology & metabolism\",\"volume\":\" \",\"pages\":\"101955\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Best practice & research. Clinical endocrinology & metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.beem.2024.101955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best practice & research. Clinical endocrinology & metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.beem.2024.101955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Current views on the role of HIF-2α in the pathogenesis and syndromic presentation of pheochromocytoma and paraganglioma.
Pathogenic variants (PVs) in EPAS1, which encodes hypoxia-inducible factor-2α (HIF-2α), could be the underlying genetic cause of about 3%-6% of pheochromocytoma and paragangliomas (PPGLs). EPAS1-related PPGLs may occur as isolated tumors or as part of Pacak-Zhuang Syndrome (PZS) with two or more of a triad of PPGL, polycythemia, and somatostatinoma. HIF-2α plays a critical role in the regulation of the cellular hypoxia pathway. When a gain-of-function PV is acquired, HIF-2α evades steady-state hydroxylation by the prolyl hydroxylase type 2 (PHD2), which accelerates von Hippel-Lindau (VHL)-mediated proteasomal degradation. In this situation, HIF-2α is stabilized and can translocate to the nucleus, inducing the expression of several genes involved in tumorigenesis. This leads to the development of PPGL and other manifestations of PZS. EPAS1-related PPGLs usually occur in the second or third decade of life, more frequently in females, and are usually multiple, adrenal and extra-adrenal, and norepinephrine-secreting. In addition, these tumors carry an increased metastatic potential and have been reported with metastatic disease in up to 30% of cases. While polycythemia is fairly common in PZS, somatostatinomas are rare. It has been suggested that the character of the acquired PV in EPAS1, which affects its binding to PHD2, correlates with certain phenotypes in PZS. PVs in EPAS1 that have been found in related sporadic PPGLs have also been associated with hypoxic conditions including cyanotic congenital heart disease, hemoglobinopathies and high altitude. Understanding the hypoxia pathway and its role in the pathogenesis of PPGL may open a new avenue for developing effective therapies for these tumors. Indeed, one of these therapies is Belzutifan, a HIF-2α inhibitor that is being tested in the treatment of metastatic PPGLs.