Zikai Guo , Zhichao Li , Jia Wang , Hongxiao Jiang , Xu Wang , Yangyang Sun , Weiren Huang
{"title":"实验室膀胱癌建模:来自患者器官组织的启示","authors":"Zikai Guo , Zhichao Li , Jia Wang , Hongxiao Jiang , Xu Wang , Yangyang Sun , Weiren Huang","doi":"10.1016/j.bbcan.2024.189199","DOIUrl":null,"url":null,"abstract":"<div><div>Bladder cancer (BCa) is the most common malignant tumor of the urinary system. Current treatments often have poor efficacy and carry a high risk of recurrence and progression due to the lack of consideration of tumor heterogeneity. Patient-derived organoids (PDOs) are three-dimensional tissue cultures that preserve tumor heterogeneity and clinical relevance better than cancer cell lines. Moreover, PDOs are more cost-effective and efficient to cultivate compared to patient-derived tumor xenografts, while closely mirroring the tissue and genetic characteristics of their source tissues. The development of PDOs involves critical steps such as sample selection and processing, culture medium optimization, matrix selection, and improvements in culture methods. This review summarizes the methodologies for generating PDOs from patients with BCa and discusses the current advancements in drug sensitivity testing, immunotherapy, living biobanks, drug screening, and mechanistic studies, highlighting their role in advancing personalized medicine.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 6","pages":"Article 189199"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling bladder cancer in the laboratory: Insights from patient-derived organoids\",\"authors\":\"Zikai Guo , Zhichao Li , Jia Wang , Hongxiao Jiang , Xu Wang , Yangyang Sun , Weiren Huang\",\"doi\":\"10.1016/j.bbcan.2024.189199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bladder cancer (BCa) is the most common malignant tumor of the urinary system. Current treatments often have poor efficacy and carry a high risk of recurrence and progression due to the lack of consideration of tumor heterogeneity. Patient-derived organoids (PDOs) are three-dimensional tissue cultures that preserve tumor heterogeneity and clinical relevance better than cancer cell lines. Moreover, PDOs are more cost-effective and efficient to cultivate compared to patient-derived tumor xenografts, while closely mirroring the tissue and genetic characteristics of their source tissues. The development of PDOs involves critical steps such as sample selection and processing, culture medium optimization, matrix selection, and improvements in culture methods. This review summarizes the methodologies for generating PDOs from patients with BCa and discusses the current advancements in drug sensitivity testing, immunotherapy, living biobanks, drug screening, and mechanistic studies, highlighting their role in advancing personalized medicine.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1879 6\",\"pages\":\"Article 189199\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X24001306\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24001306","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Modeling bladder cancer in the laboratory: Insights from patient-derived organoids
Bladder cancer (BCa) is the most common malignant tumor of the urinary system. Current treatments often have poor efficacy and carry a high risk of recurrence and progression due to the lack of consideration of tumor heterogeneity. Patient-derived organoids (PDOs) are three-dimensional tissue cultures that preserve tumor heterogeneity and clinical relevance better than cancer cell lines. Moreover, PDOs are more cost-effective and efficient to cultivate compared to patient-derived tumor xenografts, while closely mirroring the tissue and genetic characteristics of their source tissues. The development of PDOs involves critical steps such as sample selection and processing, culture medium optimization, matrix selection, and improvements in culture methods. This review summarizes the methodologies for generating PDOs from patients with BCa and discusses the current advancements in drug sensitivity testing, immunotherapy, living biobanks, drug screening, and mechanistic studies, highlighting their role in advancing personalized medicine.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.