{"title":"TRAITER:利用细胞核形态学和 DNA 损伤标记物进行心力衰竭的变构指导诊断和预后。","authors":"Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi","doi":"10.1093/bioinformatics/btae610","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.</p><p><strong>Results: </strong>This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.</p><p><strong>Availability and implementation: </strong>The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552630/pdf/","citationCount":"0","resultStr":"{\"title\":\"TRAITER: transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker.\",\"authors\":\"Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi\",\"doi\":\"10.1093/bioinformatics/btae610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.</p><p><strong>Results: </strong>This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.</p><p><strong>Availability and implementation: </strong>The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TRAITER: transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker.
Motivation: Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.
Results: This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.
Availability and implementation: The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.