TRAITER:利用细胞核形态学和 DNA 损伤标记物进行心力衰竭的变构指导诊断和预后。

Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi
{"title":"TRAITER:利用细胞核形态学和 DNA 损伤标记物进行心力衰竭的变构指导诊断和预后。","authors":"Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi","doi":"10.1093/bioinformatics/btae610","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.</p><p><strong>Results: </strong>This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.</p><p><strong>Availability and implementation: </strong>The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552630/pdf/","citationCount":"0","resultStr":"{\"title\":\"TRAITER: transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker.\",\"authors\":\"Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi\",\"doi\":\"10.1093/bioinformatics/btae610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.</p><p><strong>Results: </strong>This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.</p><p><strong>Availability and implementation: </strong>The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:心力衰竭(HF)是发病和死亡的主要原因,需要精确的诊断和预后方法:心力衰竭(HF)是发病和死亡的主要原因,需要精确的诊断和预后方法:本研究提出了一种新颖的深度学习方法--基于变换器的组织图像有效补救分析(TRAITER),用于心力衰竭的诊断和预后。TRAITER 采用图像分割技术和视觉变换器,从心脏组织细胞核形态图像预测高频的可能性,并从细胞核和 DNA 损伤标记的双重染色图像预测左心室反向重塑(LVRR)的可能性。在使用 9 名患者的 31,158 张图像进行高频预测时,TRAITER 的准确率达到了 83.1%。在使用 46 名患者的 231,840 张图像进行 LVRR 预测时,TRAITER 对单张图像的准确率达到 84.2%,对单个患者的准确率达到 92.9%。TRAITER 在接收者操作特征和精确度-召回曲线方面的表现优于其他神经网络模型。我们的方法有望推动个性化高频医学决策:源代码和数据可从以下链接获取:Https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.Supplementary information:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRAITER: transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker.

Motivation: Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.

Results: This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.

Availability and implementation: The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1