{"title":"西美瑞韦通过β-TrCP/Nrf2/GPX4轴在三阴性乳腺癌细胞中诱导铁蛋白沉积。","authors":"Zhirong Lin, Zifei Liu, Xinyu Yang, Zhilong Pan, Yaxin Feng, Yunyi Zhang, Huiping Chen, Liyan Lao, Jianing Chen, Fujun Shi, Chang Gong, Wenfeng Zeng","doi":"10.1016/j.biopha.2024.117558","DOIUrl":null,"url":null,"abstract":"<p><p>The effective treatment regimens of triple-negative breast cancer (TNBC), a specific subtype of breast cancer (BC) with proneness to relapse and poor prognosis, are still lacking. Simeprevir (SIM), approved for hepatitis C infection treatment, has been proved to be a competitive drug for the treatment of various solid tumors recently. However, the anti-tumor mechanisms of SIM and therapeutic effects on TNBC are uncertain. In this study, we suggested that SIM effectively restrained the growth of MDA-MB-231 and BT-549 cells, two cell lines from TNBC. The RNA sequencing revealed that ferroptosis signaling was activated in SIM-treated TNBC cells. SIM induced ferroptosis in TNBC cells through reduced glutathione (GSH) levels, increased iron levels, ROS and lipid peroxidation. Mechanistically, SIM promoted the expression of β-TrCP to inhibit the Nrf2/GPX4 axis in TNBC cells, leading to ferroptosis. Moreover, SIM administration into the xenografts formed by MDA-MB-231 dramatically suppressed the tumor progression by inducing ferroptosis in vivo. Collectively, this finding reveals that SIM may serve as a competitive therapeutic strategy to inhibit TNBC.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117558"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simeprevir induces ferroptosis through β-TrCP/Nrf2/GPX4 axis in triple-negative breast cancer cells.\",\"authors\":\"Zhirong Lin, Zifei Liu, Xinyu Yang, Zhilong Pan, Yaxin Feng, Yunyi Zhang, Huiping Chen, Liyan Lao, Jianing Chen, Fujun Shi, Chang Gong, Wenfeng Zeng\",\"doi\":\"10.1016/j.biopha.2024.117558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effective treatment regimens of triple-negative breast cancer (TNBC), a specific subtype of breast cancer (BC) with proneness to relapse and poor prognosis, are still lacking. Simeprevir (SIM), approved for hepatitis C infection treatment, has been proved to be a competitive drug for the treatment of various solid tumors recently. However, the anti-tumor mechanisms of SIM and therapeutic effects on TNBC are uncertain. In this study, we suggested that SIM effectively restrained the growth of MDA-MB-231 and BT-549 cells, two cell lines from TNBC. The RNA sequencing revealed that ferroptosis signaling was activated in SIM-treated TNBC cells. SIM induced ferroptosis in TNBC cells through reduced glutathione (GSH) levels, increased iron levels, ROS and lipid peroxidation. Mechanistically, SIM promoted the expression of β-TrCP to inhibit the Nrf2/GPX4 axis in TNBC cells, leading to ferroptosis. Moreover, SIM administration into the xenografts formed by MDA-MB-231 dramatically suppressed the tumor progression by inducing ferroptosis in vivo. Collectively, this finding reveals that SIM may serve as a competitive therapeutic strategy to inhibit TNBC.</p>\",\"PeriodicalId\":93904,\"journal\":{\"name\":\"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie\",\"volume\":\"180 \",\"pages\":\"117558\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopha.2024.117558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2024.117558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Simeprevir induces ferroptosis through β-TrCP/Nrf2/GPX4 axis in triple-negative breast cancer cells.
The effective treatment regimens of triple-negative breast cancer (TNBC), a specific subtype of breast cancer (BC) with proneness to relapse and poor prognosis, are still lacking. Simeprevir (SIM), approved for hepatitis C infection treatment, has been proved to be a competitive drug for the treatment of various solid tumors recently. However, the anti-tumor mechanisms of SIM and therapeutic effects on TNBC are uncertain. In this study, we suggested that SIM effectively restrained the growth of MDA-MB-231 and BT-549 cells, two cell lines from TNBC. The RNA sequencing revealed that ferroptosis signaling was activated in SIM-treated TNBC cells. SIM induced ferroptosis in TNBC cells through reduced glutathione (GSH) levels, increased iron levels, ROS and lipid peroxidation. Mechanistically, SIM promoted the expression of β-TrCP to inhibit the Nrf2/GPX4 axis in TNBC cells, leading to ferroptosis. Moreover, SIM administration into the xenografts formed by MDA-MB-231 dramatically suppressed the tumor progression by inducing ferroptosis in vivo. Collectively, this finding reveals that SIM may serve as a competitive therapeutic strategy to inhibit TNBC.