利用金纳米簇扰乱微管-内质网动力学,改善三阴性乳腺癌治疗。

Kai Cao, Kaidi Luo, Yichen Zheng, Liyuan Xue, Wendi Huo, Panpan Ruan, Yuchen Wang, Yilin Xue, Xiuxiu Yao, Dongfang Xia, Xueyun Gao
{"title":"利用金纳米簇扰乱微管-内质网动力学,改善三阴性乳腺癌治疗。","authors":"Kai Cao, Kaidi Luo, Yichen Zheng, Liyuan Xue, Wendi Huo, Panpan Ruan, Yuchen Wang, Yilin Xue, Xiuxiu Yao, Dongfang Xia, Xueyun Gao","doi":"10.1039/d4tb01492h","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubules are highly dynamic structures, and their dynamic instability is indispensable for not only cell growth and movement, but also stress responses, such as endoplasmic reticulum (ER) stress. Docetaxel, a microtubule targeting agent (MTA), is the first-line drug for cancer treatment by simultaneously promoting microtubule dysregulation- and ER stress-induced cell death. However, it also causes adverse effects and drug resistance, especially in triple-negative breast cancer (TNBC) with a poor prognosis and high mortality rate. In this study, we developed a peptide-templated gold nanocluster, namely GA. GA significantly sensitizes TNBC cells to docetaxel, causing severe cell death. This effect is further validated by a 3D tumor spheroid model. Mechanistically, GA disrupted microtubule dynamic instability, meanwhile promoting PERK-mediated ER stress. Interestingly, ER stress inhibitors profoundly suppressed microtubule dysregulation, suggesting a retrograde regulation of ER stress on microtubules. <i>In vivo</i>, the combined administration of docetaxel and GA significantly suppresses tumor growth while docetaxel alone cannot. GA similarly elevated the level of caspases and PERK within tumors as <i>in vitro</i>. Importantly, GA treatment also profoundly promoted the production of anti-tumor inflammatory cytokines. Collectively, we developed an ER-microtubule regulatory nanomaterial that enhanced the therapeutic effect of docetaxel by elevating tumor cell death and anti-tumor cytokine production, providing a potential supplemental strategy for TNBC treatment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disturbing microtubule-endoplasmic reticulum dynamics by gold nanoclusters for improved triple-negative breast cancer treatment.\",\"authors\":\"Kai Cao, Kaidi Luo, Yichen Zheng, Liyuan Xue, Wendi Huo, Panpan Ruan, Yuchen Wang, Yilin Xue, Xiuxiu Yao, Dongfang Xia, Xueyun Gao\",\"doi\":\"10.1039/d4tb01492h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubules are highly dynamic structures, and their dynamic instability is indispensable for not only cell growth and movement, but also stress responses, such as endoplasmic reticulum (ER) stress. Docetaxel, a microtubule targeting agent (MTA), is the first-line drug for cancer treatment by simultaneously promoting microtubule dysregulation- and ER stress-induced cell death. However, it also causes adverse effects and drug resistance, especially in triple-negative breast cancer (TNBC) with a poor prognosis and high mortality rate. In this study, we developed a peptide-templated gold nanocluster, namely GA. GA significantly sensitizes TNBC cells to docetaxel, causing severe cell death. This effect is further validated by a 3D tumor spheroid model. Mechanistically, GA disrupted microtubule dynamic instability, meanwhile promoting PERK-mediated ER stress. Interestingly, ER stress inhibitors profoundly suppressed microtubule dysregulation, suggesting a retrograde regulation of ER stress on microtubules. <i>In vivo</i>, the combined administration of docetaxel and GA significantly suppresses tumor growth while docetaxel alone cannot. GA similarly elevated the level of caspases and PERK within tumors as <i>in vitro</i>. Importantly, GA treatment also profoundly promoted the production of anti-tumor inflammatory cytokines. Collectively, we developed an ER-microtubule regulatory nanomaterial that enhanced the therapeutic effect of docetaxel by elevating tumor cell death and anti-tumor cytokine production, providing a potential supplemental strategy for TNBC treatment.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb01492h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01492h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微管是高度动态的结构,其动态不稳定性不仅对细胞的生长和运动不可或缺,而且对内质网(ER)应激反应等应激反应也不可或缺。多西他赛是一种微管靶向药物(MTA),通过同时促进微管失调和ER应激诱导的细胞死亡,成为治疗癌症的一线药物。然而,它也会导致不良反应和耐药性,尤其是在预后差、死亡率高的三阴性乳腺癌(TNBC)中。在这项研究中,我们开发了一种多肽模板金纳米簇,即 GA。GA 能使 TNBC 细胞对多西他赛明显敏感,导致细胞严重死亡。三维肿瘤球体模型进一步验证了这一效果。从机理上讲,GA破坏了微管的动态不稳定性,同时促进了PERK介导的ER应激。有趣的是,ER应激抑制剂能显著抑制微管失调,这表明ER应激对微管有逆向调节作用。在体内,联合使用多西他赛和 GA 能显著抑制肿瘤生长,而单独使用多西他赛则不能。与体外实验一样,GA 也能提高肿瘤内 Caspases 和 PERK 的水平。重要的是,GA 治疗还能显著促进抗肿瘤炎症细胞因子的产生。总之,我们开发出了一种ER-微管调控纳米材料,它能通过提高肿瘤细胞死亡和抗肿瘤细胞因子的产生来增强多西他赛的治疗效果,为 TNBC 治疗提供了一种潜在的补充策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disturbing microtubule-endoplasmic reticulum dynamics by gold nanoclusters for improved triple-negative breast cancer treatment.

Microtubules are highly dynamic structures, and their dynamic instability is indispensable for not only cell growth and movement, but also stress responses, such as endoplasmic reticulum (ER) stress. Docetaxel, a microtubule targeting agent (MTA), is the first-line drug for cancer treatment by simultaneously promoting microtubule dysregulation- and ER stress-induced cell death. However, it also causes adverse effects and drug resistance, especially in triple-negative breast cancer (TNBC) with a poor prognosis and high mortality rate. In this study, we developed a peptide-templated gold nanocluster, namely GA. GA significantly sensitizes TNBC cells to docetaxel, causing severe cell death. This effect is further validated by a 3D tumor spheroid model. Mechanistically, GA disrupted microtubule dynamic instability, meanwhile promoting PERK-mediated ER stress. Interestingly, ER stress inhibitors profoundly suppressed microtubule dysregulation, suggesting a retrograde regulation of ER stress on microtubules. In vivo, the combined administration of docetaxel and GA significantly suppresses tumor growth while docetaxel alone cannot. GA similarly elevated the level of caspases and PERK within tumors as in vitro. Importantly, GA treatment also profoundly promoted the production of anti-tumor inflammatory cytokines. Collectively, we developed an ER-microtubule regulatory nanomaterial that enhanced the therapeutic effect of docetaxel by elevating tumor cell death and anti-tumor cytokine production, providing a potential supplemental strategy for TNBC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Development of a xanthene-based NIR fluorescent probe for accurate and sensitive detection of γ-glutamyl transpeptidase in cancer diagnosis and treatment. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. Quantum DFT analysis and molecular docking investigation of various potential breast cancer drugs. Machine learning-assisted pattern recognition and imaging of multiplexed cancer cells via a porphyrin-embedded dendrimer array. Enhanced luminescence and stability of TFMDSA nanoparticles via polymer-induced aggregation for bioimaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1