Hui Liu, Wenxin Lv, Darambazar Gantulga and Yi Wang
{"title":"水分散性荧光 COF 干扰溶酶体自噬,促进级联酶化学动力-饥饿疗法。","authors":"Hui Liu, Wenxin Lv, Darambazar Gantulga and Yi Wang","doi":"10.1039/D4TB01534G","DOIUrl":null,"url":null,"abstract":"<p >Cascading enzymatic therapy is a promising approach in cancer treatment. However, its effectiveness is often hindered by enzyme inactivation, limited exposure of active sites, cancer cell self-protection mechanisms such as autophagy, and non-specific toxicity, which can lead to treatment failure. To address these challenges, we used a low-temperature aqueous-phase synthesis method to create semi-crystalline, water-dispersible fluorescent COF nanospheres. These nanospheres can stably load glucose oxidase (GOx) and ultrafine Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanozymes, allowing for convenient coating with tumor cell membranes to form a uniform tumor-targeted cascading enzymatic nanosystem (CFGM). This system promotes a cycle of tumor glucose depletion, reactive oxygen species (ROS) generation, and oxygen production, facilitating tumor-targeted starvation therapy (ST) and chemodynamic therapy (CDT). Notably, the semi-crystalline COF carrier within this system can degrade slowly under mildly acidic conditions, forming large aggregates that damage lysosomes and disrupt lysosomal autophagy, thereby eliminating the autophagy protection of cancer cells activated by the combined ST. This synergistic approach enhances the catalytic inhibition of tumors. Our research thus provides an alternative COF-based platform and strategy for effective cancer treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-dispersible fluorescent COFs disturb lysosomal autophagy to boost cascading enzymatic chemodynamic–starvation therapy†\",\"authors\":\"Hui Liu, Wenxin Lv, Darambazar Gantulga and Yi Wang\",\"doi\":\"10.1039/D4TB01534G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cascading enzymatic therapy is a promising approach in cancer treatment. However, its effectiveness is often hindered by enzyme inactivation, limited exposure of active sites, cancer cell self-protection mechanisms such as autophagy, and non-specific toxicity, which can lead to treatment failure. To address these challenges, we used a low-temperature aqueous-phase synthesis method to create semi-crystalline, water-dispersible fluorescent COF nanospheres. These nanospheres can stably load glucose oxidase (GOx) and ultrafine Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanozymes, allowing for convenient coating with tumor cell membranes to form a uniform tumor-targeted cascading enzymatic nanosystem (CFGM). This system promotes a cycle of tumor glucose depletion, reactive oxygen species (ROS) generation, and oxygen production, facilitating tumor-targeted starvation therapy (ST) and chemodynamic therapy (CDT). Notably, the semi-crystalline COF carrier within this system can degrade slowly under mildly acidic conditions, forming large aggregates that damage lysosomes and disrupt lysosomal autophagy, thereby eliminating the autophagy protection of cancer cells activated by the combined ST. This synergistic approach enhances the catalytic inhibition of tumors. Our research thus provides an alternative COF-based platform and strategy for effective cancer treatment.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01534g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01534g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
级联酶疗法是一种很有前景的癌症治疗方法。然而,由于酶失活、活性位点暴露有限、自噬等癌细胞自我保护机制以及非特异性毒性等原因,其疗效往往受到阻碍,从而导致治疗失败。为了应对这些挑战,我们采用低温水相合成法制造出了半结晶、可在水中分散的荧光 COF 纳米球。这些纳米球可以稳定地装载葡萄糖氧化酶(GOx)和超细Fe2O3纳米酶,方便地涂覆在肿瘤细胞膜上,形成均匀的肿瘤靶向级联酶纳米系统(CFGM)。该系统促进了肿瘤葡萄糖耗竭、活性氧(ROS)生成和氧气产生的循环,有利于肿瘤靶向饥饿疗法(ST)和化学动力学疗法(CDT)。值得注意的是,该系统中的半结晶 COF 载体在弱酸性条件下会缓慢降解,形成大的聚集体,破坏溶酶体和溶酶体自噬,从而消除了联合 ST 激活的癌细胞的自噬保护。这种协同方法增强了对肿瘤的催化抑制作用。因此,我们的研究为有效治疗癌症提供了另一种基于 COF 的平台和策略。
Cascading enzymatic therapy is a promising approach in cancer treatment. However, its effectiveness is often hindered by enzyme inactivation, limited exposure of active sites, cancer cell self-protection mechanisms such as autophagy, and non-specific toxicity, which can lead to treatment failure. To address these challenges, we used a low-temperature aqueous-phase synthesis method to create semi-crystalline, water-dispersible fluorescent COF nanospheres. These nanospheres can stably load glucose oxidase (GOx) and ultrafine Fe2O3 nanozymes, allowing for convenient coating with tumor cell membranes to form a uniform tumor-targeted cascading enzymatic nanosystem (CFGM). This system promotes a cycle of tumor glucose depletion, reactive oxygen species (ROS) generation, and oxygen production, facilitating tumor-targeted starvation therapy (ST) and chemodynamic therapy (CDT). Notably, the semi-crystalline COF carrier within this system can degrade slowly under mildly acidic conditions, forming large aggregates that damage lysosomes and disrupt lysosomal autophagy, thereby eliminating the autophagy protection of cancer cells activated by the combined ST. This synergistic approach enhances the catalytic inhibition of tumors. Our research thus provides an alternative COF-based platform and strategy for effective cancer treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices