反思十年演变:基于 MapReduce 的分区聚类、层次聚类和密度聚类的进展(2013-2023 年)

Tanvir Habib Sardar
{"title":"反思十年演变:基于 MapReduce 的分区聚类、层次聚类和密度聚类的进展(2013-2023 年)","authors":"Tanvir Habib Sardar","doi":"10.1002/widm.1566","DOIUrl":null,"url":null,"abstract":"The traditional clustering algorithms are not appropriate for large real‐world datasets or big data, which is attributable to computational expensiveness and scalability issues. As a solution, the last decade's research headed towards distributed clustering using the MapReduce framework. This study conducts a bibliometric review to assess, establish, and measure the patterns and trends of the MapReduce‐based partitioning, hierarchical, and density clustering algorithms over the past decade (2013–2023). A digital text‐mining‐based comprehensive search technique with multiple field‐specific keywords, inclusion measures, and exclusion criteria is employed to obtain the research landscape from the Scopus database. The Scopus‐obtained data is analyzed using the VOSViewer software tool and coded using the R statistical analysis tool. The analysis identifies the numbers of scholarly articles, diversities of article sources, their impact and growth patterns, details of most influential authors and co‐authors, most cited articles, most contributing affiliations and countries, and their collaborations, use of different keywords and their impact, and so forth. The study further explores the articles and reports the methodologies employed for designing MapReduce‐based counterparts of traditional partitioning, hierarchical, and density clustering algorithms and their optimizations and hybridizations. Finally, the study lists the main research challenges encountered in the past decade for MapReduce‐based partitioning, hierarchical, and density clustering. It suggests possible areas for future research to contribute further in this field.","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflecting on a Decade of Evolution: MapReduce‐Based Advances in Partitioning‐Based, Hierarchical‐Based, and Density‐Based Clustering (2013–2023)\",\"authors\":\"Tanvir Habib Sardar\",\"doi\":\"10.1002/widm.1566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional clustering algorithms are not appropriate for large real‐world datasets or big data, which is attributable to computational expensiveness and scalability issues. As a solution, the last decade's research headed towards distributed clustering using the MapReduce framework. This study conducts a bibliometric review to assess, establish, and measure the patterns and trends of the MapReduce‐based partitioning, hierarchical, and density clustering algorithms over the past decade (2013–2023). A digital text‐mining‐based comprehensive search technique with multiple field‐specific keywords, inclusion measures, and exclusion criteria is employed to obtain the research landscape from the Scopus database. The Scopus‐obtained data is analyzed using the VOSViewer software tool and coded using the R statistical analysis tool. The analysis identifies the numbers of scholarly articles, diversities of article sources, their impact and growth patterns, details of most influential authors and co‐authors, most cited articles, most contributing affiliations and countries, and their collaborations, use of different keywords and their impact, and so forth. The study further explores the articles and reports the methodologies employed for designing MapReduce‐based counterparts of traditional partitioning, hierarchical, and density clustering algorithms and their optimizations and hybridizations. Finally, the study lists the main research challenges encountered in the past decade for MapReduce‐based partitioning, hierarchical, and density clustering. It suggests possible areas for future research to contribute further in this field.\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.1566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的聚类算法并不适合大型真实数据集或海量数据,这归因于计算耗费和可扩展性问题。作为一种解决方案,过去十年的研究转向使用 MapReduce 框架的分布式聚类。本研究对过去十年(2013-2023 年)基于 MapReduce 的分区、分层和密度聚类算法进行了文献计量学回顾,以评估、建立和衡量这些算法的模式和趋势。我们采用了基于数字文本挖掘的综合搜索技术,使用多个特定领域的关键词、纳入措施和排除标准,从 Scopus 数据库中获取研究概况。使用 VOSViewer 软件工具对 Scopus 数据进行分析,并使用 R 统计分析工具进行编码。分析确定了学术文章的数量、文章来源的多样性、文章的影响力和增长模式、最有影响力的作者和合著者的详细信息、被引用次数最多的文章、贡献最多的单位和国家及其合作关系、不同关键词的使用及其影响等。研究进一步探讨了这些文章,并报告了在设计基于 MapReduce 的传统分区、分层和密度聚类算法的对应算法时所采用的方法及其优化和混合。最后,研究列举了过去十年中基于 MapReduce 的分区、分层和密度聚类所遇到的主要研究挑战。研究还提出了未来研究的可能领域,以进一步推动该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reflecting on a Decade of Evolution: MapReduce‐Based Advances in Partitioning‐Based, Hierarchical‐Based, and Density‐Based Clustering (2013–2023)
The traditional clustering algorithms are not appropriate for large real‐world datasets or big data, which is attributable to computational expensiveness and scalability issues. As a solution, the last decade's research headed towards distributed clustering using the MapReduce framework. This study conducts a bibliometric review to assess, establish, and measure the patterns and trends of the MapReduce‐based partitioning, hierarchical, and density clustering algorithms over the past decade (2013–2023). A digital text‐mining‐based comprehensive search technique with multiple field‐specific keywords, inclusion measures, and exclusion criteria is employed to obtain the research landscape from the Scopus database. The Scopus‐obtained data is analyzed using the VOSViewer software tool and coded using the R statistical analysis tool. The analysis identifies the numbers of scholarly articles, diversities of article sources, their impact and growth patterns, details of most influential authors and co‐authors, most cited articles, most contributing affiliations and countries, and their collaborations, use of different keywords and their impact, and so forth. The study further explores the articles and reports the methodologies employed for designing MapReduce‐based counterparts of traditional partitioning, hierarchical, and density clustering algorithms and their optimizations and hybridizations. Finally, the study lists the main research challenges encountered in the past decade for MapReduce‐based partitioning, hierarchical, and density clustering. It suggests possible areas for future research to contribute further in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trace Encoding Techniques for Multi‐Perspective Process Mining: A Comparative Study Hyper‐Parameter Optimization of Kernel Functions on Multi‐Class Text Categorization: A Comparative Evaluation Dimensionality Reduction for Data Analysis With Quantum Feature Learning Business Analytics in Customer Lifetime Value: An Overview Analysis Knowledge Graph for Solubility Big Data: Construction and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1