Mengge Yu, Giselle Sek Suan Nah, Vaidehi Krishnan, Fatin Nasha Bte Sulaimi, King Pan Ng, Chuqi Wang, Shruti Bhatt, Charles Chuah, David E. Bergstrom, S. Tiong Ong
{"title":"BIM缺失多态性会增强白血病干细胞和祖细胞的存活能力,并影响对靶向疗法的反应","authors":"Mengge Yu, Giselle Sek Suan Nah, Vaidehi Krishnan, Fatin Nasha Bte Sulaimi, King Pan Ng, Chuqi Wang, Shruti Bhatt, Charles Chuah, David E. Bergstrom, S. Tiong Ong","doi":"10.1038/s41375-024-02418-0","DOIUrl":null,"url":null,"abstract":"<p>One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the <i>BIM</i> deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP’s role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"22 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The BIM deletion polymorphism potentiates the survival of leukemia stem and progenitor cells and impairs response to targeted therapies\",\"authors\":\"Mengge Yu, Giselle Sek Suan Nah, Vaidehi Krishnan, Fatin Nasha Bte Sulaimi, King Pan Ng, Chuqi Wang, Shruti Bhatt, Charles Chuah, David E. Bergstrom, S. Tiong Ong\",\"doi\":\"10.1038/s41375-024-02418-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the <i>BIM</i> deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP’s role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.</p>\",\"PeriodicalId\":18109,\"journal\":{\"name\":\"Leukemia\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41375-024-02418-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-024-02418-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
The BIM deletion polymorphism potentiates the survival of leukemia stem and progenitor cells and impairs response to targeted therapies
One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the BIM deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP’s role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues