BIM缺失多态性会增强白血病干细胞和祖细胞的存活能力,并影响对靶向疗法的反应

IF 12.8 1区 医学 Q1 HEMATOLOGY Leukemia Pub Date : 2024-10-22 DOI:10.1038/s41375-024-02418-0
Mengge Yu, Giselle Sek Suan Nah, Vaidehi Krishnan, Fatin Nasha Bte Sulaimi, King Pan Ng, Chuqi Wang, Shruti Bhatt, Charles Chuah, David E. Bergstrom, S. Tiong Ong
{"title":"BIM缺失多态性会增强白血病干细胞和祖细胞的存活能力,并影响对靶向疗法的反应","authors":"Mengge Yu, Giselle Sek Suan Nah, Vaidehi Krishnan, Fatin Nasha Bte Sulaimi, King Pan Ng, Chuqi Wang, Shruti Bhatt, Charles Chuah, David E. Bergstrom, S. Tiong Ong","doi":"10.1038/s41375-024-02418-0","DOIUrl":null,"url":null,"abstract":"<p>One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the <i>BIM</i> deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP’s role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"22 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The BIM deletion polymorphism potentiates the survival of leukemia stem and progenitor cells and impairs response to targeted therapies\",\"authors\":\"Mengge Yu, Giselle Sek Suan Nah, Vaidehi Krishnan, Fatin Nasha Bte Sulaimi, King Pan Ng, Chuqi Wang, Shruti Bhatt, Charles Chuah, David E. Bergstrom, S. Tiong Ong\",\"doi\":\"10.1038/s41375-024-02418-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the <i>BIM</i> deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP’s role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.</p>\",\"PeriodicalId\":18109,\"journal\":{\"name\":\"Leukemia\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41375-024-02418-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-024-02418-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

六分之一的人类癌症存在致病性种系变异,但很少有研究证实它们对癌症结果的功能性影响。在这里,我们建立了一个人源化小鼠模型,该模型携带一种常见的东亚多态性--BIM缺失多态性(BDP),它通过产生非凋亡剪接异构体而对致癌激酶抑制剂产生抗性。然而,尽管BDP在介导患者批量抗药性方面作用明显,但它在癌症干细胞和祖细胞中的作用仍不清楚,因为癌症干细胞和祖细胞是疾病的始作俑者,与分化的肿瘤细胞相比,它们具有改变的BCL-2流变。为了研究 BDP 在白血病启动过程中的作用,我们将 BDP 小鼠与慢性髓性白血病(CML)模型杂交。我们发现,BDP 大大提高了 CML 细胞的适应性,其竞争优势提高了三倍,导致疾病更具侵袭性。BDP 使 CML 干细胞和祖细胞(LSPCs)对伊马替尼诱导的细胞死亡具有几乎完全的抵抗力。通过 BH3 分析,我们发现了 BDP LSPCs 对 MCL-1 拮抗剂的新型治疗脆弱性,并在原代人类 LSPCs 和体内证实了这一点。我们的研究结果证明了人类多态性对 LSPCs 存活的影响,并凸显了它们作为定制疗法辅助诊断的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The BIM deletion polymorphism potentiates the survival of leukemia stem and progenitor cells and impairs response to targeted therapies

One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the BIM deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP’s role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown. To study the role of the BDP in leukemia initiation, we crossed the BDP mouse into a chronic myeloid leukemia (CML) model. We found that the BDP greatly enhanced the fitness of CML cells with a three-fold greater competitive advantage, leading to more aggressive disease. The BDP conferred almost complete resistance to cell death induced by imatinib in CML stem and progenitor cells (LSPCs). Using BH3 profiling, we identified a novel therapeutic vulnerability of BDP LSPCs to MCL-1 antagonists, which we confirmed in primary human LSPCs, and in vivo. Our findings demonstrate the impact of human polymorphisms on the survival of LSPCs and highlight their potential as companion diagnostics for tailored therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Leukemia
Leukemia 医学-血液学
CiteScore
18.10
自引率
3.50%
发文量
270
审稿时长
3-6 weeks
期刊介绍: Title: Leukemia Journal Overview: Publishes high-quality, peer-reviewed research Covers all aspects of research and treatment of leukemia and allied diseases Includes studies of normal hemopoiesis due to comparative relevance Topics of Interest: Oncogenes Growth factors Stem cells Leukemia genomics Cell cycle Signal transduction Molecular targets for therapy And more Content Types: Original research articles Reviews Letters Correspondence Comments elaborating on significant advances and covering topical issues
期刊最新文献
Adding eltrombopag to intensive immunosuppressive therapy for severe aplastic anaemia may help adult patients achieve outcomes similar to paediatric patients Global patterns of leukemia by subtype, age, and sex in 185 countries in 2022 Graft-versus-host disease after anti-CD19 chimeric antigen receptor T-cell therapy following allogeneic hematopoietic cell transplantation: a transplant complications and paediatric diseases working parties joint EBMT study Polycomb group protein Mel18 inhibits hematopoietic stem cell self-renewal through repressing the transcription of self-renewal and proliferation genes Glucose uptake capacity of leukaemia cells in vitro correlates with response to induction therapy in acute myeloid leukaemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1