Mohamed Mostafa, Ahmad S Almogren, Muhammad Al-Qurishi, Majed Alrubaian
{"title":"用于社交网络假新闻检测的模态深度学习框架:系统性文献综述","authors":"Mohamed Mostafa, Ahmad S Almogren, Muhammad Al-Qurishi, Majed Alrubaian","doi":"10.1145/3700748","DOIUrl":null,"url":null,"abstract":"Fake news on social networks is a challenging problem due to the rapid dissemination and volume of information, as well as the ease of creating and sharing content anonymously. Fake news stories are problematic not only for the credibility of online journalism, but also due to their detrimental real-world consequences. The primary research objective of this study is: What are the recent state-of-the-art modalities based on deep learning to detect fake news in social networks. This paper presents a systematic literature review of deep learning-based fake news detection models in social networks. The methodology followed a rigorous approach, including predefined criteria for study selection of deep learning modalities. This study focuses on the types of deep learning modalities; unimodal (refers to the use of a single model for analysis or modeling purposes) and multimodal models (refers to the integration of multiple models). The results of this review reveal the strengths and weaknesses of modalities approaches, as well as the limitations of low-resource languages datasets. Furthermore, it provides insights into future directions for deep learning models and different fact checking techniques. At the end of this study, we discuss the problem of fake news detection in the era of large language models in terms of advantages, drawbacks, and challenges.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modality deep-learning frameworks for fake news detection on social networks: a systematic literature review\",\"authors\":\"Mohamed Mostafa, Ahmad S Almogren, Muhammad Al-Qurishi, Majed Alrubaian\",\"doi\":\"10.1145/3700748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news on social networks is a challenging problem due to the rapid dissemination and volume of information, as well as the ease of creating and sharing content anonymously. Fake news stories are problematic not only for the credibility of online journalism, but also due to their detrimental real-world consequences. The primary research objective of this study is: What are the recent state-of-the-art modalities based on deep learning to detect fake news in social networks. This paper presents a systematic literature review of deep learning-based fake news detection models in social networks. The methodology followed a rigorous approach, including predefined criteria for study selection of deep learning modalities. This study focuses on the types of deep learning modalities; unimodal (refers to the use of a single model for analysis or modeling purposes) and multimodal models (refers to the integration of multiple models). The results of this review reveal the strengths and weaknesses of modalities approaches, as well as the limitations of low-resource languages datasets. Furthermore, it provides insights into future directions for deep learning models and different fact checking techniques. At the end of this study, we discuss the problem of fake news detection in the era of large language models in terms of advantages, drawbacks, and challenges.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3700748\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3700748","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Modality deep-learning frameworks for fake news detection on social networks: a systematic literature review
Fake news on social networks is a challenging problem due to the rapid dissemination and volume of information, as well as the ease of creating and sharing content anonymously. Fake news stories are problematic not only for the credibility of online journalism, but also due to their detrimental real-world consequences. The primary research objective of this study is: What are the recent state-of-the-art modalities based on deep learning to detect fake news in social networks. This paper presents a systematic literature review of deep learning-based fake news detection models in social networks. The methodology followed a rigorous approach, including predefined criteria for study selection of deep learning modalities. This study focuses on the types of deep learning modalities; unimodal (refers to the use of a single model for analysis or modeling purposes) and multimodal models (refers to the integration of multiple models). The results of this review reveal the strengths and weaknesses of modalities approaches, as well as the limitations of low-resource languages datasets. Furthermore, it provides insights into future directions for deep learning models and different fact checking techniques. At the end of this study, we discuss the problem of fake news detection in the era of large language models in terms of advantages, drawbacks, and challenges.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.