Amber K. Hamilton, Alexander B. Radaoui, Matthew Tsang, Daniel Martinez, Karina L. Conkrite, Khushbu Patel, Simone Sidoli, Alberto Delaidelli, Apexa Modi, Jo Lynne Rokita, Maria V. Lane, Nicholas Hartnett, Raphael D. Lopez, Bo Zhang, Chuwei Zhong, Brian Ennis, Daniel P. Miller, Miguel A. Brown, Komal S. Rathi, Pichai Raman, Sharon J. Diskin
{"title":"蛋白质基因组表面组研究发现 DLK1 是神经母细胞瘤的免疫治疗靶点","authors":"Amber K. Hamilton, Alexander B. Radaoui, Matthew Tsang, Daniel Martinez, Karina L. Conkrite, Khushbu Patel, Simone Sidoli, Alberto Delaidelli, Apexa Modi, Jo Lynne Rokita, Maria V. Lane, Nicholas Hartnett, Raphael D. Lopez, Bo Zhang, Chuwei Zhong, Brian Ennis, Daniel P. Miller, Miguel A. Brown, Komal S. Rathi, Pichai Raman, Sharon J. Diskin","doi":"10.1016/j.ccell.2024.10.003","DOIUrl":null,"url":null,"abstract":"Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlates with a super-enhancer. Immunofluorescence, flow cytometry, and immunohistochemistry show robust cell surface expression of DLK1. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells results in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Since high DLK1 expression is found in several adult and pediatric cancers, our study demonstrates the utility of a proteogenomic approach and credentials DLK1 as an immunotherapeutic target.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"12 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma\",\"authors\":\"Amber K. Hamilton, Alexander B. Radaoui, Matthew Tsang, Daniel Martinez, Karina L. Conkrite, Khushbu Patel, Simone Sidoli, Alberto Delaidelli, Apexa Modi, Jo Lynne Rokita, Maria V. Lane, Nicholas Hartnett, Raphael D. Lopez, Bo Zhang, Chuwei Zhong, Brian Ennis, Daniel P. Miller, Miguel A. Brown, Komal S. Rathi, Pichai Raman, Sharon J. Diskin\",\"doi\":\"10.1016/j.ccell.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlates with a super-enhancer. Immunofluorescence, flow cytometry, and immunohistochemistry show robust cell surface expression of DLK1. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells results in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Since high DLK1 expression is found in several adult and pediatric cancers, our study demonstrates the utility of a proteogenomic approach and credentials DLK1 as an immunotherapeutic target.\",\"PeriodicalId\":9670,\"journal\":{\"name\":\"Cancer Cell\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":48.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ccell.2024.10.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2024.10.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma
Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlates with a super-enhancer. Immunofluorescence, flow cytometry, and immunohistochemistry show robust cell surface expression of DLK1. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells results in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Since high DLK1 expression is found in several adult and pediatric cancers, our study demonstrates the utility of a proteogenomic approach and credentials DLK1 as an immunotherapeutic target.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.