Show-1:将像素模型和潜在扩散模型用于文本到视频的生成

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-10-24 DOI:10.1007/s11263-024-02271-9
David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu, Difei Gao, Mike Zheng Shou
{"title":"Show-1:将像素模型和潜在扩散模型用于文本到视频的生成","authors":"David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu, Difei Gao, Mike Zheng Shou","doi":"10.1007/s11263-024-02271-9","DOIUrl":null,"url":null,"abstract":"<p>Significant advancements have been achieved in the realm of large-scale pre-trained text-to-video Diffusion Models (VDMs). However, previous methods either rely solely on pixel-based VDMs, which come with high computational costs, or on latent-based VDMs, which often struggle with precise text-video alignment. In this paper, we are the first to propose a hybrid model, dubbed as Show-1, which marries pixel-based and latent-based VDMs for text-to-video generation. Our model first uses pixel-based VDMs to produce a low-resolution video of strong text-video correlation. After that, we propose a novel expert translation method that employs the latent-based VDMs to further upsample the low-resolution video to high resolution, which can also remove potential artifacts and corruptions from low-resolution videos. Compared to latent VDMs, Show-1 can produce high-quality videos of precise text-video alignment; Compared to pixel VDMs, Show-1 is much more efficient (GPU memory usage during inference is 15 G vs. 72 G). Furthermore, our Show-1 model can be readily adapted for motion customization and video stylization applications through simple temporal attention layer finetuning. Our model achieves state-of-the-art performance on standard video generation benchmarks. Code of Show-1 is publicly available and more videos can be found here.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Show-1: Marrying Pixel and Latent Diffusion Models for Text-to-Video Generation\",\"authors\":\"David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu, Difei Gao, Mike Zheng Shou\",\"doi\":\"10.1007/s11263-024-02271-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Significant advancements have been achieved in the realm of large-scale pre-trained text-to-video Diffusion Models (VDMs). However, previous methods either rely solely on pixel-based VDMs, which come with high computational costs, or on latent-based VDMs, which often struggle with precise text-video alignment. In this paper, we are the first to propose a hybrid model, dubbed as Show-1, which marries pixel-based and latent-based VDMs for text-to-video generation. Our model first uses pixel-based VDMs to produce a low-resolution video of strong text-video correlation. After that, we propose a novel expert translation method that employs the latent-based VDMs to further upsample the low-resolution video to high resolution, which can also remove potential artifacts and corruptions from low-resolution videos. Compared to latent VDMs, Show-1 can produce high-quality videos of precise text-video alignment; Compared to pixel VDMs, Show-1 is much more efficient (GPU memory usage during inference is 15 G vs. 72 G). Furthermore, our Show-1 model can be readily adapted for motion customization and video stylization applications through simple temporal attention layer finetuning. Our model achieves state-of-the-art performance on standard video generation benchmarks. Code of Show-1 is publicly available and more videos can be found here.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02271-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02271-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在大规模预训练文本到视频扩散模型(VDM)领域取得了重大进展。然而,以前的方法要么完全依赖于基于像素的 VDM,计算成本高昂;要么依赖于基于潜隐的 VDM,往往难以实现文本与视频的精确对齐。在本文中,我们首次提出了一种混合模型,称为 Show-1,它将基于像素的 VDM 和基于潜变量的 VDM 结合在一起,用于文本到视频的生成。我们的模型首先使用基于像素的 VDM 生成文本与视频高度相关的低分辨率视频。然后,我们提出了一种新颖的专家翻译方法,该方法利用基于潜像的 VDM 将低分辨率视频进一步升采样到高分辨率,这样还能去除低分辨率视频中潜在的伪影和损坏。与潜在 VDM 相比,Show-1 可以生成文本与视频精确对齐的高质量视频;与像素 VDM 相比,Show-1 的效率更高(推理过程中 GPU 内存使用量为 15 G,而像素 VDM 为 72 G)。此外,通过简单的时间注意层微调,我们的 Show-1 模型还能轻松地适用于运动定制和视频风格化应用。我们的模型在标准视频生成基准上达到了最先进的性能。Show-1 的代码已公开,更多视频请点击此处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Show-1: Marrying Pixel and Latent Diffusion Models for Text-to-Video Generation

Significant advancements have been achieved in the realm of large-scale pre-trained text-to-video Diffusion Models (VDMs). However, previous methods either rely solely on pixel-based VDMs, which come with high computational costs, or on latent-based VDMs, which often struggle with precise text-video alignment. In this paper, we are the first to propose a hybrid model, dubbed as Show-1, which marries pixel-based and latent-based VDMs for text-to-video generation. Our model first uses pixel-based VDMs to produce a low-resolution video of strong text-video correlation. After that, we propose a novel expert translation method that employs the latent-based VDMs to further upsample the low-resolution video to high resolution, which can also remove potential artifacts and corruptions from low-resolution videos. Compared to latent VDMs, Show-1 can produce high-quality videos of precise text-video alignment; Compared to pixel VDMs, Show-1 is much more efficient (GPU memory usage during inference is 15 G vs. 72 G). Furthermore, our Show-1 model can be readily adapted for motion customization and video stylization applications through simple temporal attention layer finetuning. Our model achieves state-of-the-art performance on standard video generation benchmarks. Code of Show-1 is publicly available and more videos can be found here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
MVTN: Learning Multi-view Transformations for 3D Understanding Adaptive Middle Modality Alignment Learning for Visible-Infrared Person Re-identification Day2Dark: Pseudo-Supervised Activity Recognition Beyond Silent Daylight Rethinking Contemporary Deep Learning Techniques for Error Correction in Biometric Data EfficientDeRain+: Learning Uncertainty-Aware Filtering via RainMix Augmentation for High-Efficiency Deraining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1