Qiqi Li, Gang Yang, Bingbing Ren, Xu Liu, Li-Qin Tang, Qinghua Shi, Ge Shan, Xiaolin Wang
{"title":"ZC3H14 通过与外显子-内含子边界和 3′ UTR 结合促进反拼接","authors":"Qiqi Li, Gang Yang, Bingbing Ren, Xu Liu, Li-Qin Tang, Qinghua Shi, Ge Shan, Xiaolin Wang","doi":"10.1016/j.molcel.2024.10.001","DOIUrl":null,"url":null,"abstract":"Circular RNAs (circRNAs) are natural outputs of eukaryotic transcription and RNA processing and have emerged as critical regulators in physiology and diseases. Although multiple <em>cis</em>-elements and <em>trans</em>-factors are reported to modulate the backsplicing of circRNA biogenesis, most of these regulations play roles in flanking introns of circRNAs. Here, using a genome-wide CRISPR knockout screen, we have identified an evolutionarily conserved RNA-binding protein ZC3H14 in regulating circRNA biogenesis. ZC3H14 binds to 3′ and 5′ exon-intron boundaries and 3′ UTRs of cognate mRNAs to promote circRNA biogenesis through dimerization and the association with spliceosome. Yeast knockout of the ZC3H14 ortholog Nab2 has significantly lower levels of circRNAs. <em>Zc3h14</em><sup>−/−</sup> mice exhibit disrupted spermatogenesis and reduced testicular circRNA levels. Additionally, expression levels of human ZC3H14 are associated with non-obstructive azoospermia. Our findings reveal a conserved requirement for ZC3H14 in the modulation of backsplicing and link ZC3H14 and circRNA biogenesis to male fertility.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"42 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZC3H14 facilitates backsplicing by binding to exon-intron boundary and 3′ UTR\",\"authors\":\"Qiqi Li, Gang Yang, Bingbing Ren, Xu Liu, Li-Qin Tang, Qinghua Shi, Ge Shan, Xiaolin Wang\",\"doi\":\"10.1016/j.molcel.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circular RNAs (circRNAs) are natural outputs of eukaryotic transcription and RNA processing and have emerged as critical regulators in physiology and diseases. Although multiple <em>cis</em>-elements and <em>trans</em>-factors are reported to modulate the backsplicing of circRNA biogenesis, most of these regulations play roles in flanking introns of circRNAs. Here, using a genome-wide CRISPR knockout screen, we have identified an evolutionarily conserved RNA-binding protein ZC3H14 in regulating circRNA biogenesis. ZC3H14 binds to 3′ and 5′ exon-intron boundaries and 3′ UTRs of cognate mRNAs to promote circRNA biogenesis through dimerization and the association with spliceosome. Yeast knockout of the ZC3H14 ortholog Nab2 has significantly lower levels of circRNAs. <em>Zc3h14</em><sup>−/−</sup> mice exhibit disrupted spermatogenesis and reduced testicular circRNA levels. Additionally, expression levels of human ZC3H14 are associated with non-obstructive azoospermia. Our findings reveal a conserved requirement for ZC3H14 in the modulation of backsplicing and link ZC3H14 and circRNA biogenesis to male fertility.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.10.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ZC3H14 facilitates backsplicing by binding to exon-intron boundary and 3′ UTR
Circular RNAs (circRNAs) are natural outputs of eukaryotic transcription and RNA processing and have emerged as critical regulators in physiology and diseases. Although multiple cis-elements and trans-factors are reported to modulate the backsplicing of circRNA biogenesis, most of these regulations play roles in flanking introns of circRNAs. Here, using a genome-wide CRISPR knockout screen, we have identified an evolutionarily conserved RNA-binding protein ZC3H14 in regulating circRNA biogenesis. ZC3H14 binds to 3′ and 5′ exon-intron boundaries and 3′ UTRs of cognate mRNAs to promote circRNA biogenesis through dimerization and the association with spliceosome. Yeast knockout of the ZC3H14 ortholog Nab2 has significantly lower levels of circRNAs. Zc3h14−/− mice exhibit disrupted spermatogenesis and reduced testicular circRNA levels. Additionally, expression levels of human ZC3H14 are associated with non-obstructive azoospermia. Our findings reveal a conserved requirement for ZC3H14 in the modulation of backsplicing and link ZC3H14 and circRNA biogenesis to male fertility.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.