{"title":"AS2LS:用于医学图像分割的基于解剖结构的自适应双层水平集框架","authors":"Tianyi Han;Haoyu Cao;Yunyun Yang","doi":"10.1109/TIP.2024.3483563","DOIUrl":null,"url":null,"abstract":"Medical images often exhibit intricate structures, inhomogeneous intensity, significant noise and blurred edges, presenting challenges for medical image segmentation. Several segmentation algorithms grounded in mathematics, computer science, and medical domains have been proposed to address this matter; nevertheless, there is still considerable scope for improvement. This paper proposes a novel adaptive anatomical structure-based two-layer level set framework (AS2LS) for segmenting organs with concentric structures, such as the left ventricle and the fundus. By adaptive fitting region and edge intensity information, the AS2LS achieves high accuracy in segmenting complex medical images characterized by inhomogeneous intensity, blurred boundaries and interference from surrounding organs. Moreover, we introduce a novel two-layer level set representation based on anatomical structures, coupled with a two-stage level set evolution algorithm. Experimental results demonstrate the superior accuracy of AS2LS in comparison to representative level set methods and deep learning methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6393-6408"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AS2LS: Adaptive Anatomical Structure-Based Two-Layer Level Set Framework for Medical Image Segmentation\",\"authors\":\"Tianyi Han;Haoyu Cao;Yunyun Yang\",\"doi\":\"10.1109/TIP.2024.3483563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical images often exhibit intricate structures, inhomogeneous intensity, significant noise and blurred edges, presenting challenges for medical image segmentation. Several segmentation algorithms grounded in mathematics, computer science, and medical domains have been proposed to address this matter; nevertheless, there is still considerable scope for improvement. This paper proposes a novel adaptive anatomical structure-based two-layer level set framework (AS2LS) for segmenting organs with concentric structures, such as the left ventricle and the fundus. By adaptive fitting region and edge intensity information, the AS2LS achieves high accuracy in segmenting complex medical images characterized by inhomogeneous intensity, blurred boundaries and interference from surrounding organs. Moreover, we introduce a novel two-layer level set representation based on anatomical structures, coupled with a two-stage level set evolution algorithm. Experimental results demonstrate the superior accuracy of AS2LS in comparison to representative level set methods and deep learning methods.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"6393-6408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735086/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10735086/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AS2LS: Adaptive Anatomical Structure-Based Two-Layer Level Set Framework for Medical Image Segmentation
Medical images often exhibit intricate structures, inhomogeneous intensity, significant noise and blurred edges, presenting challenges for medical image segmentation. Several segmentation algorithms grounded in mathematics, computer science, and medical domains have been proposed to address this matter; nevertheless, there is still considerable scope for improvement. This paper proposes a novel adaptive anatomical structure-based two-layer level set framework (AS2LS) for segmenting organs with concentric structures, such as the left ventricle and the fundus. By adaptive fitting region and edge intensity information, the AS2LS achieves high accuracy in segmenting complex medical images characterized by inhomogeneous intensity, blurred boundaries and interference from surrounding organs. Moreover, we introduce a novel two-layer level set representation based on anatomical structures, coupled with a two-stage level set evolution algorithm. Experimental results demonstrate the superior accuracy of AS2LS in comparison to representative level set methods and deep learning methods.