{"title":"头颈部鳞状细胞癌中的小核极 RNA","authors":"C. Duan, Y. Abola, J. Zhao, Y. Wang","doi":"10.1177/00220345241279369","DOIUrl":null,"url":null,"abstract":"Small nucleolar RNAs (snoRNAs), a distinct class of noncoding RNAs, encompass highly diverse structures and have a range of 60 to 300 nucleotides in length. About 90% of human snoRNAs are intronic and embedded within introns of their host gene transcripts. Most snoRNAs enriched in specific tissue correlate in abundance with their parental host genes. Advancements in high-throughput sequencing have facilitated the discovery of dysregulated snoRNA expression in numerous human malignancies including head and neck squamous cell carcinoma (HNSCC). Hundreds of differentially expressed snoRNAs have been identified in HNSCC tissues. Among 1,524 snoRNA genes in a 567 HNSCC cohort, 113 snoRNAs were found to be survival related. As for snoRNA’s roles in HNSCC, based on the available evidence, dysregulated snoRNAs are closely associated with the carcinogenesis and development of HNSCC. Upregulated snoRNAs have been shown to augment the expression of other oncogenes or activate the Wnt/β-catenin signaling pathway, thereby promoting tumor cell viability, glycolysis, migration, and the epithelial-mesenchymal transition while inhibiting apoptosis in vitro. In vivo animal studies have further elucidated the functional roles of snoRNAs. Knockdown of host genes of these snoRNAs suppressed the Wnt/β-catenin signaling pathway and restrained tumor proliferation and aggressiveness in mice. The putative mechanisms underlying these observations are associated with the biological functions of snoRNAs, primarily involving microRNA-like functions through the generation of microRNA-like fragments and regulation of alternative splicing to yield diverse transcripts. While most of the snoRNAs are upregulated in HNSCC, 4 downregulated snoRNAs have been identified and annotated. SNORA36B (implicated in the regulation of DNA templates) and U3 (chr17, influencing cell proliferation) may serve as protective factors associated with prolonged overall survival. This review describes the viable structures of snoRNAs, endeavors to refine snoRNA sequencing technology, and summarizes snoRNAs’ expression profile as well as their role in HNSCC progression for potential diagnostic and therapeutic strategies for HNSCC management.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Nucleolar RNAs in Head and Neck Squamous Cell Carcinomas\",\"authors\":\"C. Duan, Y. Abola, J. Zhao, Y. Wang\",\"doi\":\"10.1177/00220345241279369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small nucleolar RNAs (snoRNAs), a distinct class of noncoding RNAs, encompass highly diverse structures and have a range of 60 to 300 nucleotides in length. About 90% of human snoRNAs are intronic and embedded within introns of their host gene transcripts. Most snoRNAs enriched in specific tissue correlate in abundance with their parental host genes. Advancements in high-throughput sequencing have facilitated the discovery of dysregulated snoRNA expression in numerous human malignancies including head and neck squamous cell carcinoma (HNSCC). Hundreds of differentially expressed snoRNAs have been identified in HNSCC tissues. Among 1,524 snoRNA genes in a 567 HNSCC cohort, 113 snoRNAs were found to be survival related. As for snoRNA’s roles in HNSCC, based on the available evidence, dysregulated snoRNAs are closely associated with the carcinogenesis and development of HNSCC. Upregulated snoRNAs have been shown to augment the expression of other oncogenes or activate the Wnt/β-catenin signaling pathway, thereby promoting tumor cell viability, glycolysis, migration, and the epithelial-mesenchymal transition while inhibiting apoptosis in vitro. In vivo animal studies have further elucidated the functional roles of snoRNAs. Knockdown of host genes of these snoRNAs suppressed the Wnt/β-catenin signaling pathway and restrained tumor proliferation and aggressiveness in mice. The putative mechanisms underlying these observations are associated with the biological functions of snoRNAs, primarily involving microRNA-like functions through the generation of microRNA-like fragments and regulation of alternative splicing to yield diverse transcripts. While most of the snoRNAs are upregulated in HNSCC, 4 downregulated snoRNAs have been identified and annotated. SNORA36B (implicated in the regulation of DNA templates) and U3 (chr17, influencing cell proliferation) may serve as protective factors associated with prolonged overall survival. This review describes the viable structures of snoRNAs, endeavors to refine snoRNA sequencing technology, and summarizes snoRNAs’ expression profile as well as their role in HNSCC progression for potential diagnostic and therapeutic strategies for HNSCC management.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345241279369\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241279369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Small Nucleolar RNAs in Head and Neck Squamous Cell Carcinomas
Small nucleolar RNAs (snoRNAs), a distinct class of noncoding RNAs, encompass highly diverse structures and have a range of 60 to 300 nucleotides in length. About 90% of human snoRNAs are intronic and embedded within introns of their host gene transcripts. Most snoRNAs enriched in specific tissue correlate in abundance with their parental host genes. Advancements in high-throughput sequencing have facilitated the discovery of dysregulated snoRNA expression in numerous human malignancies including head and neck squamous cell carcinoma (HNSCC). Hundreds of differentially expressed snoRNAs have been identified in HNSCC tissues. Among 1,524 snoRNA genes in a 567 HNSCC cohort, 113 snoRNAs were found to be survival related. As for snoRNA’s roles in HNSCC, based on the available evidence, dysregulated snoRNAs are closely associated with the carcinogenesis and development of HNSCC. Upregulated snoRNAs have been shown to augment the expression of other oncogenes or activate the Wnt/β-catenin signaling pathway, thereby promoting tumor cell viability, glycolysis, migration, and the epithelial-mesenchymal transition while inhibiting apoptosis in vitro. In vivo animal studies have further elucidated the functional roles of snoRNAs. Knockdown of host genes of these snoRNAs suppressed the Wnt/β-catenin signaling pathway and restrained tumor proliferation and aggressiveness in mice. The putative mechanisms underlying these observations are associated with the biological functions of snoRNAs, primarily involving microRNA-like functions through the generation of microRNA-like fragments and regulation of alternative splicing to yield diverse transcripts. While most of the snoRNAs are upregulated in HNSCC, 4 downregulated snoRNAs have been identified and annotated. SNORA36B (implicated in the regulation of DNA templates) and U3 (chr17, influencing cell proliferation) may serve as protective factors associated with prolonged overall survival. This review describes the viable structures of snoRNAs, endeavors to refine snoRNA sequencing technology, and summarizes snoRNAs’ expression profile as well as their role in HNSCC progression for potential diagnostic and therapeutic strategies for HNSCC management.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.