液体制剂中油酸诱导抗体聚集的缓解策略

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2024-11-04 Epub Date: 2024-10-23 DOI:10.1021/acs.molpharmaceut.4c00754
Dominik Zürcher, Klaus Wuchner, Paolo Arosio
{"title":"液体制剂中油酸诱导抗体聚集的缓解策略","authors":"Dominik Zürcher, Klaus Wuchner, Paolo Arosio","doi":"10.1021/acs.molpharmaceut.4c00754","DOIUrl":null,"url":null,"abstract":"<p><p>Polysorbates 20 and 80 (PS20 and PS80) are commonly used in the formulations of biologics to protect against interfacial stresses. However, these surfactants can degrade over time, releasing free fatty acids, which assemble into solid particles or liquid droplets. Here, we apply a droplet microfluidic platform to analyze the interactions between antibodies and oleic acid, the primary free fatty acid resulting from the hydrolysis of PS80. We show that antibodies adsorb within seconds to the polar oleic acid-water interface, forming a viscoelastic protein layer that leads to particle formation upon mechanical rupture. By testing two different monoclonal antibodies of pharmaceutical origin, we show that the propensity to form a rigid viscoelastic layer is protein-specific. We further demonstrate that intact PS80 is effective in preventing antibody adsorption at the oleic acid-water interface only at low antibody concentrations and low pH, where oleic acid is fully protonated. Importantly, introduction of the amino acid l-arginine prevents the formation of the interfacial layer and protein particles even at high antibody concentrations (180 mg mL<sup>-1</sup>). Overall, our findings indicate that oleic acid droplets in antibody formulations can lead to the formation of protein particles via an interface-mediated mechanism. Depending on the conditions, intact PS80 alone might not be sufficient to protect against antibody aggregation. Additional mitigation strategies include the optimization of protein physicochemical properties, pH, and the addition of arginine.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"5761-5771"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigation Strategies against Antibody Aggregation Induced by Oleic Acid in Liquid Formulations.\",\"authors\":\"Dominik Zürcher, Klaus Wuchner, Paolo Arosio\",\"doi\":\"10.1021/acs.molpharmaceut.4c00754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polysorbates 20 and 80 (PS20 and PS80) are commonly used in the formulations of biologics to protect against interfacial stresses. However, these surfactants can degrade over time, releasing free fatty acids, which assemble into solid particles or liquid droplets. Here, we apply a droplet microfluidic platform to analyze the interactions between antibodies and oleic acid, the primary free fatty acid resulting from the hydrolysis of PS80. We show that antibodies adsorb within seconds to the polar oleic acid-water interface, forming a viscoelastic protein layer that leads to particle formation upon mechanical rupture. By testing two different monoclonal antibodies of pharmaceutical origin, we show that the propensity to form a rigid viscoelastic layer is protein-specific. We further demonstrate that intact PS80 is effective in preventing antibody adsorption at the oleic acid-water interface only at low antibody concentrations and low pH, where oleic acid is fully protonated. Importantly, introduction of the amino acid l-arginine prevents the formation of the interfacial layer and protein particles even at high antibody concentrations (180 mg mL<sup>-1</sup>). Overall, our findings indicate that oleic acid droplets in antibody formulations can lead to the formation of protein particles via an interface-mediated mechanism. Depending on the conditions, intact PS80 alone might not be sufficient to protect against antibody aggregation. Additional mitigation strategies include the optimization of protein physicochemical properties, pH, and the addition of arginine.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"5761-5771\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00754\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00754","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

聚山梨醇酯 20 和 80(PS20 和 PS80)常用于生物制剂配方中,以防止界面应力。然而,这些表面活性剂会随着时间的推移而降解,释放出游离脂肪酸,并聚集成固体颗粒或液滴。在这里,我们应用液滴微流控平台分析了抗体与油酸(PS80 水解产生的主要游离脂肪酸)之间的相互作用。我们的研究表明,抗体会在几秒钟内吸附在极性油酸-水界面上,形成粘弹性蛋白层,在机械破裂时形成颗粒。通过测试两种不同的药用单克隆抗体,我们发现形成刚性粘弹性层的倾向具有蛋白质特异性。我们进一步证明,只有在低抗体浓度和低 pH 值(油酸完全质子化)条件下,完整的 PS80 才能有效阻止抗体在油酸-水界面上的吸附。重要的是,即使在抗体浓度较高(180 毫克/毫升-1)的情况下,引入氨基酸 l-精氨酸也能阻止界面层和蛋白质颗粒的形成。总之,我们的研究结果表明,抗体配方中的油酸液滴可通过界面介导机制导致蛋白质颗粒的形成。根据不同的条件,仅靠完整的 PS80 可能不足以防止抗体聚集。其他缓解策略包括优化蛋白质的理化性质、pH 值和添加精氨酸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation Strategies against Antibody Aggregation Induced by Oleic Acid in Liquid Formulations.

Polysorbates 20 and 80 (PS20 and PS80) are commonly used in the formulations of biologics to protect against interfacial stresses. However, these surfactants can degrade over time, releasing free fatty acids, which assemble into solid particles or liquid droplets. Here, we apply a droplet microfluidic platform to analyze the interactions between antibodies and oleic acid, the primary free fatty acid resulting from the hydrolysis of PS80. We show that antibodies adsorb within seconds to the polar oleic acid-water interface, forming a viscoelastic protein layer that leads to particle formation upon mechanical rupture. By testing two different monoclonal antibodies of pharmaceutical origin, we show that the propensity to form a rigid viscoelastic layer is protein-specific. We further demonstrate that intact PS80 is effective in preventing antibody adsorption at the oleic acid-water interface only at low antibody concentrations and low pH, where oleic acid is fully protonated. Importantly, introduction of the amino acid l-arginine prevents the formation of the interfacial layer and protein particles even at high antibody concentrations (180 mg mL-1). Overall, our findings indicate that oleic acid droplets in antibody formulations can lead to the formation of protein particles via an interface-mediated mechanism. Depending on the conditions, intact PS80 alone might not be sufficient to protect against antibody aggregation. Additional mitigation strategies include the optimization of protein physicochemical properties, pH, and the addition of arginine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Comparative Study of Dimeric Fibroblast Activation Protein-Targeting Radioligands Labeled with Fluorine-18, Copper-64, and Gallium-68. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Effect of Moisture Sorption and Lactose Type on Tablet Quality: A Hygroscopicity Study between Lactose Powder and Tablets. Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces. Insights into Folding and Molecular Environment of Lyophilized Proteins Using Pulsed Electron Paramagnetic Resonance Spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1