正掺杂硒化银量子点的带内激子动力学。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-06 Epub Date: 2024-10-28 DOI:10.1021/acs.nanolett.4c02659
Rajesh Bera, Miguel Dosil, Gerasimos Konstantatos
{"title":"正掺杂硒化银量子点的带内激子动力学。","authors":"Rajesh Bera, Miguel Dosil, Gerasimos Konstantatos","doi":"10.1021/acs.nanolett.4c02659","DOIUrl":null,"url":null,"abstract":"<p><p>Ag<sub><i>x</i></sub>Se (<i>x</i> > 2) colloidal quantum dots (CQDs) have recently emerged as a promising environmentally friendly material contender for mid- and long-wave infrared optoelectronics, leveraging their intraband transition (1S<sub>e</sub>-1P<sub>e</sub>). However, multicarrier interactions in CQDs, particularly Auger recombination, have profound implications on the optoelectronic properties of the materials and their potential in device applications. Understanding the intraband excited-state dynamics in n-doped Ag<sub><i>x</i></sub>Se is therefore essential for the assessment and successful implementation of this material platform in devices. We, herein, investigate the carrier dynamics of Ag<sub><i>x</i></sub>Se in both solution and thin-film states using a femtosecond mid-infrared transient absorption spectrometer. Our observations reveal that the multicarrier Auger process depends on the degree of doping in Ag<sub><i>x</i></sub>Se CQDs and accelerates when the Fermi energy (<i>E</i><sub>F</sub>) level approaches the 1P<sub>e</sub> state. The calculated intraband Auger coefficients (<i>C</i><sub>A</sub>) are measured to be on the order of ∼10<sup>-28</sup> cm<sup>6</sup> s<sup>-1</sup>, significantly larger compared to analogous n-doped HgS/Se CQDs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intraband Exciton Dynamics of n-Doped Silver Selenide Quantum Dots.\",\"authors\":\"Rajesh Bera, Miguel Dosil, Gerasimos Konstantatos\",\"doi\":\"10.1021/acs.nanolett.4c02659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ag<sub><i>x</i></sub>Se (<i>x</i> > 2) colloidal quantum dots (CQDs) have recently emerged as a promising environmentally friendly material contender for mid- and long-wave infrared optoelectronics, leveraging their intraband transition (1S<sub>e</sub>-1P<sub>e</sub>). However, multicarrier interactions in CQDs, particularly Auger recombination, have profound implications on the optoelectronic properties of the materials and their potential in device applications. Understanding the intraband excited-state dynamics in n-doped Ag<sub><i>x</i></sub>Se is therefore essential for the assessment and successful implementation of this material platform in devices. We, herein, investigate the carrier dynamics of Ag<sub><i>x</i></sub>Se in both solution and thin-film states using a femtosecond mid-infrared transient absorption spectrometer. Our observations reveal that the multicarrier Auger process depends on the degree of doping in Ag<sub><i>x</i></sub>Se CQDs and accelerates when the Fermi energy (<i>E</i><sub>F</sub>) level approaches the 1P<sub>e</sub> state. The calculated intraband Auger coefficients (<i>C</i><sub>A</sub>) are measured to be on the order of ∼10<sup>-28</sup> cm<sup>6</sup> s<sup>-1</sup>, significantly larger compared to analogous n-doped HgS/Se CQDs.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02659\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02659","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,AgxSe(x > 2)胶体量子点(CQDs)利用其带内跃迁(1Se-1Pe),成为中波和长波红外光电领域一种前景看好的环保型材料。然而,CQDs 中的多载流子相互作用,特别是奥杰尔重组,对材料的光电特性及其在器件应用中的潜力有着深远的影响。因此,了解正掺杂 AgxSe 的带内激发态动力学对于评估和在器件中成功应用这种材料平台至关重要。我们在本文中使用飞秒中红外瞬态吸收光谱仪研究了 AgxSe 在溶液和薄膜状态下的载流子动力学。我们的观察结果表明,多载流子奥杰过程取决于 AgxSe CQDs 中的掺杂程度,当费米能(EF)水平接近 1Pe 状态时,多载流子奥杰过程会加速。计算得出的带内奥杰系数(CA)约为 ∼10-28 cm6 s-1,比类似的正掺杂 HgS/Se CQDs 大得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intraband Exciton Dynamics of n-Doped Silver Selenide Quantum Dots.

AgxSe (x > 2) colloidal quantum dots (CQDs) have recently emerged as a promising environmentally friendly material contender for mid- and long-wave infrared optoelectronics, leveraging their intraband transition (1Se-1Pe). However, multicarrier interactions in CQDs, particularly Auger recombination, have profound implications on the optoelectronic properties of the materials and their potential in device applications. Understanding the intraband excited-state dynamics in n-doped AgxSe is therefore essential for the assessment and successful implementation of this material platform in devices. We, herein, investigate the carrier dynamics of AgxSe in both solution and thin-film states using a femtosecond mid-infrared transient absorption spectrometer. Our observations reveal that the multicarrier Auger process depends on the degree of doping in AgxSe CQDs and accelerates when the Fermi energy (EF) level approaches the 1Pe state. The calculated intraband Auger coefficients (CA) are measured to be on the order of ∼10-28 cm6 s-1, significantly larger compared to analogous n-doped HgS/Se CQDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Highly Monodisperse Stable Gold Nanorod Powder for Optical Sensor High-Performance Radiative Cooling Sunscreen Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1