{"title":"促进强吸收流体的吸收光谱分析:高通量方法","authors":"Fabian Eller, Eva M Herzig","doi":"10.1021/acs.jpca.4c04902","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring absorption spectra of strongly absorbing solutions is usually only possible by diluting the solution. However, the absorption spectra can be heavily influenced by concentration-dependent interactions, so dilution leads to misleading results. To enable reliable absorption measurements of concentrated solutions, we introduce in this work thinning fluid film spectroscopy (TFFS), a simple and highly automatable method. We present three exemplary measurement modes of TFFS suitable for many different applications and validate the TFFS measurements with control data obtained in specialized, low optical path length cuvettes. Additionally, we compare the suitability of the different measurement modes over a broad concentration range and demonstrate the automation possibilities with a spectroscopy robot. Beyond this automated approach for highly efficient and high-throughput lab work, we also show the possibility of direct integration into production systems with an in-line setup, which can be incorporated into a variety of pipe systems. The TFFS method is not limited to samples from material science but can be transferred to a broad variety of research and industry fields, including proteins, food, and pharmaceuticals or also agriculture and forensics.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9682-9687"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitating Absorption Spectroscopy of Strongly Absorbing Fluids: A High-Throughput Approach.\",\"authors\":\"Fabian Eller, Eva M Herzig\",\"doi\":\"10.1021/acs.jpca.4c04902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring absorption spectra of strongly absorbing solutions is usually only possible by diluting the solution. However, the absorption spectra can be heavily influenced by concentration-dependent interactions, so dilution leads to misleading results. To enable reliable absorption measurements of concentrated solutions, we introduce in this work thinning fluid film spectroscopy (TFFS), a simple and highly automatable method. We present three exemplary measurement modes of TFFS suitable for many different applications and validate the TFFS measurements with control data obtained in specialized, low optical path length cuvettes. Additionally, we compare the suitability of the different measurement modes over a broad concentration range and demonstrate the automation possibilities with a spectroscopy robot. Beyond this automated approach for highly efficient and high-throughput lab work, we also show the possibility of direct integration into production systems with an in-line setup, which can be incorporated into a variety of pipe systems. The TFFS method is not limited to samples from material science but can be transferred to a broad variety of research and industry fields, including proteins, food, and pharmaceuticals or also agriculture and forensics.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"9682-9687\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04902\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04902","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Facilitating Absorption Spectroscopy of Strongly Absorbing Fluids: A High-Throughput Approach.
Measuring absorption spectra of strongly absorbing solutions is usually only possible by diluting the solution. However, the absorption spectra can be heavily influenced by concentration-dependent interactions, so dilution leads to misleading results. To enable reliable absorption measurements of concentrated solutions, we introduce in this work thinning fluid film spectroscopy (TFFS), a simple and highly automatable method. We present three exemplary measurement modes of TFFS suitable for many different applications and validate the TFFS measurements with control data obtained in specialized, low optical path length cuvettes. Additionally, we compare the suitability of the different measurement modes over a broad concentration range and demonstrate the automation possibilities with a spectroscopy robot. Beyond this automated approach for highly efficient and high-throughput lab work, we also show the possibility of direct integration into production systems with an in-line setup, which can be incorporated into a variety of pipe systems. The TFFS method is not limited to samples from material science but can be transferred to a broad variety of research and industry fields, including proteins, food, and pharmaceuticals or also agriculture and forensics.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.