Diana Rachii, Elise L Bezold, William M Wuest, Kevin P C Minbiole
{"title":"丛生尾多重季鏻化合物:具有良好治疗指标的强效两性消毒剂。","authors":"Diana Rachii, Elise L Bezold, William M Wuest, Kevin P C Minbiole","doi":"10.1002/cmdc.202400546","DOIUrl":null,"url":null,"abstract":"<p><p>Quaternary ammonium compounds (QACs) have been essential for protecting human health for almost a century, functioning as surface disinfectants and sanitizers. With bacterial resistance increasing against commercially available QACs, the development of novel antimicrobials with divergent architectures is essential for effective infection prevention and control. Toward this end, our group has expanded beyond traditional ammonium scaffolds and explored the development of quaternary phosphonium compounds (QPCs). Herein, we report the synthesis and biological investigation of a series of 20 novel multicationic QPCs, bearing multiple short alkyl or aryl chains, also referred to as \"bushy-tailed\" multiQPCs; these structures were hypothesized to have strong bioactivity while displaying low mammalian toxicity. Select bushy-tailed QPC derivatives with trishexylphosphonium groups displayed single-digit or sub-micromolar activity against all seven bacteria tested, and MIC values of 2- to 8-fold better than their bushy-tailed QAC counterparts. Importantly, therapeutic indices of these bushy-tailed QPCs were favorable in many cases, and were ≥4 against the entire bacterial panel for pX-P6*,P6* and 1,8-P6*,P6*, superior to more traditional architectures. This work highlights the promise of a novel set of multicationic phosphonium compounds as novel disinfectants with potent bioactivities and low toxicity.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400546"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bushy-Tailed Multicationic Quaternary Phosphonium Compounds: Potent Amphiphilic Disinfectants with Promising Therapeutic Indices.\",\"authors\":\"Diana Rachii, Elise L Bezold, William M Wuest, Kevin P C Minbiole\",\"doi\":\"10.1002/cmdc.202400546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quaternary ammonium compounds (QACs) have been essential for protecting human health for almost a century, functioning as surface disinfectants and sanitizers. With bacterial resistance increasing against commercially available QACs, the development of novel antimicrobials with divergent architectures is essential for effective infection prevention and control. Toward this end, our group has expanded beyond traditional ammonium scaffolds and explored the development of quaternary phosphonium compounds (QPCs). Herein, we report the synthesis and biological investigation of a series of 20 novel multicationic QPCs, bearing multiple short alkyl or aryl chains, also referred to as \\\"bushy-tailed\\\" multiQPCs; these structures were hypothesized to have strong bioactivity while displaying low mammalian toxicity. Select bushy-tailed QPC derivatives with trishexylphosphonium groups displayed single-digit or sub-micromolar activity against all seven bacteria tested, and MIC values of 2- to 8-fold better than their bushy-tailed QAC counterparts. Importantly, therapeutic indices of these bushy-tailed QPCs were favorable in many cases, and were ≥4 against the entire bacterial panel for pX-P6*,P6* and 1,8-P6*,P6*, superior to more traditional architectures. This work highlights the promise of a novel set of multicationic phosphonium compounds as novel disinfectants with potent bioactivities and low toxicity.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400546\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400546\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400546","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Quaternary ammonium compounds (QACs) have been essential for protecting human health for almost a century, functioning as surface disinfectants and sanitizers. With bacterial resistance increasing against commercially available QACs, the development of novel antimicrobials with divergent architectures is essential for effective infection prevention and control. Toward this end, our group has expanded beyond traditional ammonium scaffolds and explored the development of quaternary phosphonium compounds (QPCs). Herein, we report the synthesis and biological investigation of a series of 20 novel multicationic QPCs, bearing multiple short alkyl or aryl chains, also referred to as "bushy-tailed" multiQPCs; these structures were hypothesized to have strong bioactivity while displaying low mammalian toxicity. Select bushy-tailed QPC derivatives with trishexylphosphonium groups displayed single-digit or sub-micromolar activity against all seven bacteria tested, and MIC values of 2- to 8-fold better than their bushy-tailed QAC counterparts. Importantly, therapeutic indices of these bushy-tailed QPCs were favorable in many cases, and were ≥4 against the entire bacterial panel for pX-P6*,P6* and 1,8-P6*,P6*, superior to more traditional architectures. This work highlights the promise of a novel set of multicationic phosphonium compounds as novel disinfectants with potent bioactivities and low toxicity.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.