用于高效太阳能驱动水净化的生物灵感磁性软机器鱼。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-24 DOI:10.1002/smtd.202400880
Jingjing Qin, Jiahao Li, Guozheng Yang, Kaibin Chu, Leiqian Zhang, Fangping Xu, Yujie Chen, Yaoxin Zhang, Wei Fan, Johan Hofkens, Bo Li, YinBo Zhu, HengAn Wu, Swee Ching Tan, Feili Lai, Tianxi Liu
{"title":"用于高效太阳能驱动水净化的生物灵感磁性软机器鱼。","authors":"Jingjing Qin, Jiahao Li, Guozheng Yang, Kaibin Chu, Leiqian Zhang, Fangping Xu, Yujie Chen, Yaoxin Zhang, Wei Fan, Johan Hofkens, Bo Li, YinBo Zhu, HengAn Wu, Swee Ching Tan, Feili Lai, Tianxi Liu","doi":"10.1002/smtd.202400880","DOIUrl":null,"url":null,"abstract":"<p><p>Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe<sub>3</sub>O<sub>4</sub> nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400880"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bio-Inspired Magnetic Soft Robotic Fish for Efficient Solar-Energy Driven Water Purification.\",\"authors\":\"Jingjing Qin, Jiahao Li, Guozheng Yang, Kaibin Chu, Leiqian Zhang, Fangping Xu, Yujie Chen, Yaoxin Zhang, Wei Fan, Johan Hofkens, Bo Li, YinBo Zhu, HengAn Wu, Swee Ching Tan, Feili Lai, Tianxi Liu\",\"doi\":\"10.1002/smtd.202400880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe<sub>3</sub>O<sub>4</sub> nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400880\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400880\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400880","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的水蒸发是解决全球缺水问题的一个可行方案,但由于其需要大量能源,因此仍面临挑战。在这里,通过将磁性纳米粒子(Fe3O4)、聚(N-异丙基丙烯酰胺)和羧甲基壳聚糖结合在一起,开发出了一种磁性软机械仿生鱼。这种仿生鱼可通过亲水/疏水相变释放液态水,并大幅降低能耗。引入的 Fe3O4 纳米粒子赋予了仿生鱼磁力驱动能力,可实现远程操作和回收。此外,有限元模拟证实,磁驱动过程加快了仿生鱼的吸水速度。研究结果表明,仿生鱼不仅能有效清除溶解在水中的有机分子染料,还能清除天然湖泊中的有害微生物和不溶性微颗粒。此外,仿生鱼在经过五次循环后仍能保持良好的净化效率。此外,仿生鱼还具有其他功能,如盐净化和盐排斥。最后,结合分子动力学计算解释了水净化的机理。这项工作为利用软机器人的相变行为进行高效太阳能水净化提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bio-Inspired Magnetic Soft Robotic Fish for Efficient Solar-Energy Driven Water Purification.

Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe3O4), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe3O4 nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Oxygen Vacancy Engineering of TiNb2O7 Modified PE Separator Toward Dendrite-Free Lithium Metal Battery. Analysis of Metal-Organic Framework and Polyamide Interfaces in Membranes for Water Treatment and Antibacterial Applications. Dual-Passivation Strategy of Bulk and Surface Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Electrochemical Exfoliation of Large Antioxidative MXene Flakes for Polymeric Fire Safety. Platelet Activation-Induced In Situ Trapping Metastatic Tumor Cells Strategy for Post-Surgery Tumor Recurrence Immunochemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1