作为潜在降糖药的新型噁唑衍生物的设计、合成和生物学评价。

IF 3.3 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic & Medicinal Chemistry Pub Date : 2024-10-18 DOI:10.1016/j.bmc.2024.117961
Ruifeng Wang , Ke Chen , Shuihua Liu , Ruyue Ren , Hongbao Hou , Qingxuan Zeng , Yi Zhang , Yunfeng Liu
{"title":"作为潜在降糖药的新型噁唑衍生物的设计、合成和生物学评价。","authors":"Ruifeng Wang ,&nbsp;Ke Chen ,&nbsp;Shuihua Liu ,&nbsp;Ruyue Ren ,&nbsp;Hongbao Hou ,&nbsp;Qingxuan Zeng ,&nbsp;Yi Zhang ,&nbsp;Yunfeng Liu","doi":"10.1016/j.bmc.2024.117961","DOIUrl":null,"url":null,"abstract":"<div><div>A series of 2,4-disubstituted-oxazole derivatives have been designed and synthesized based on compound 3a, a promising lead compound developed in our lab. Among these derivatives, the optimized compound 5k exhibited potent hypoglycemic activity, increasing glucose consumption by 60 % in HepG2 cells compared to the solvent control, and its activity was higher than that of metformin. Further investigation indicated that compound 5k exhibited negligible cytotoxic effects at a concentration of 25 μM in HepG2 and 3T3-L1 cells and showed moderate inhibitory activity against various subtypes of human cytochrome P450 subtypes. An oral glucose tolerance test confirmed that 5k is an effective hypoglycemic agent. Additionally, mechanistic studies suggested that 5k may exert its hypoglycemic activity through the activation of the AMPK pathway.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"114 ","pages":"Article 117961"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and biological evaluation of novel oxazole derivatives as potential hypoglycemic agents\",\"authors\":\"Ruifeng Wang ,&nbsp;Ke Chen ,&nbsp;Shuihua Liu ,&nbsp;Ruyue Ren ,&nbsp;Hongbao Hou ,&nbsp;Qingxuan Zeng ,&nbsp;Yi Zhang ,&nbsp;Yunfeng Liu\",\"doi\":\"10.1016/j.bmc.2024.117961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A series of 2,4-disubstituted-oxazole derivatives have been designed and synthesized based on compound 3a, a promising lead compound developed in our lab. Among these derivatives, the optimized compound 5k exhibited potent hypoglycemic activity, increasing glucose consumption by 60 % in HepG2 cells compared to the solvent control, and its activity was higher than that of metformin. Further investigation indicated that compound 5k exhibited negligible cytotoxic effects at a concentration of 25 μM in HepG2 and 3T3-L1 cells and showed moderate inhibitory activity against various subtypes of human cytochrome P450 subtypes. An oral glucose tolerance test confirmed that 5k is an effective hypoglycemic agent. Additionally, mechanistic studies suggested that 5k may exert its hypoglycemic activity through the activation of the AMPK pathway.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"114 \",\"pages\":\"Article 117961\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089624003754\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003754","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以我们实验室开发的前景看好的先导化合物 3a 为基础,设计并合成了一系列 2,4-二取代噁唑衍生物。在这些衍生物中,优化后的化合物 5k 表现出了强效的降血糖活性,与溶剂对照相比,它能使 HepG2 细胞的葡萄糖消耗量增加 60%,其活性高于二甲双胍。进一步的研究表明,当浓度为 25 μM 时,化合物 5k 在 HepG2 和 3T3-L1 细胞中的细胞毒性作用可忽略不计,并且对人类细胞色素 P450 的各种亚型具有中等程度的抑制活性。口服葡萄糖耐量试验证实 5k 是一种有效的降血糖药。此外,机理研究表明,5k 可能通过激活 AMPK 途径发挥降血糖活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, synthesis and biological evaluation of novel oxazole derivatives as potential hypoglycemic agents
A series of 2,4-disubstituted-oxazole derivatives have been designed and synthesized based on compound 3a, a promising lead compound developed in our lab. Among these derivatives, the optimized compound 5k exhibited potent hypoglycemic activity, increasing glucose consumption by 60 % in HepG2 cells compared to the solvent control, and its activity was higher than that of metformin. Further investigation indicated that compound 5k exhibited negligible cytotoxic effects at a concentration of 25 μM in HepG2 and 3T3-L1 cells and showed moderate inhibitory activity against various subtypes of human cytochrome P450 subtypes. An oral glucose tolerance test confirmed that 5k is an effective hypoglycemic agent. Additionally, mechanistic studies suggested that 5k may exert its hypoglycemic activity through the activation of the AMPK pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioorganic & Medicinal Chemistry
Bioorganic & Medicinal Chemistry 医学-生化与分子生物学
CiteScore
6.80
自引率
2.90%
发文量
413
审稿时长
17 days
期刊介绍: Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides. The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.
期刊最新文献
Esterase-responsive nanoparticles (ERN): A targeted approach for drug/gene delivery exploits Recent progress on small molecule TLR4 antagonist against triple-negative breast cancer progression and complications. Graphical abstract TOC Graphical abstract TOC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1