Zhaoyan Yang, Kai Zhu, Kuo Yang, Yeming Qing, Youjiang Zhao, Lei Wu, Shenfei Zong, Yiping Cui, Zhuyuan Wang
{"title":"使用便携式 SERS 棋盘基板一步检测水生环境中的纳米塑料。","authors":"Zhaoyan Yang, Kai Zhu, Kuo Yang, Yeming Qing, Youjiang Zhao, Lei Wu, Shenfei Zong, Yiping Cui, Zhuyuan Wang","doi":"10.1016/j.talanta.2024.127076","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane. Through a straightforward suction filtration process, nanoplastics were captured by the PASN gap in a single step for subsequent SERS detection, while excess moisture was promptly eliminated from the filter membrane. The PASN-based SERS chessboard substrate, benefiting from the enhanced electromagnetic (EM) field, effectively discriminated polystyrene (PS) nanoplastics ranging in size from 30 nm to 1000 nm. Furthermore, this substrate demonstrated favorable repeatability (RSD of 8.6 %), high sensitivity with a detection limit of 0.001 mg/mL for 100 nm of PS nanoplastics, and broad linear detection ranges spanning from 0.001 to 0.5 mg/mL (R<sup>2</sup> = 0.9916). Additionally, the SERS chessboard substrate enabled quantitative analysis of nanoplastics spiked in tap and lake water samples. Notably, the entire pre-concentration and detection procedure required only 3 μL of sample and could be completed within 1 min. With the accessibility of portable detection instruments and the ability to prepare substrates on demand, the PASN-based SERS chessboard substrate is anticipated to facilitate the establishment of a comprehensive global nanoplastics map.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127076"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step detection of nanoplastics in aquatic environments using a portable SERS chessboard substrate.\",\"authors\":\"Zhaoyan Yang, Kai Zhu, Kuo Yang, Yeming Qing, Youjiang Zhao, Lei Wu, Shenfei Zong, Yiping Cui, Zhuyuan Wang\",\"doi\":\"10.1016/j.talanta.2024.127076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane. Through a straightforward suction filtration process, nanoplastics were captured by the PASN gap in a single step for subsequent SERS detection, while excess moisture was promptly eliminated from the filter membrane. The PASN-based SERS chessboard substrate, benefiting from the enhanced electromagnetic (EM) field, effectively discriminated polystyrene (PS) nanoplastics ranging in size from 30 nm to 1000 nm. Furthermore, this substrate demonstrated favorable repeatability (RSD of 8.6 %), high sensitivity with a detection limit of 0.001 mg/mL for 100 nm of PS nanoplastics, and broad linear detection ranges spanning from 0.001 to 0.5 mg/mL (R<sup>2</sup> = 0.9916). Additionally, the SERS chessboard substrate enabled quantitative analysis of nanoplastics spiked in tap and lake water samples. Notably, the entire pre-concentration and detection procedure required only 3 μL of sample and could be completed within 1 min. With the accessibility of portable detection instruments and the ability to prepare substrates on demand, the PASN-based SERS chessboard substrate is anticipated to facilitate the establishment of a comprehensive global nanoplastics map.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"282 \",\"pages\":\"127076\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
One-step detection of nanoplastics in aquatic environments using a portable SERS chessboard substrate.
Nanoplastics present a significant hazard to both the environment and human health. However, the development of rapid and sensitive analysis techniques for nanoplastics is limited by their small size, lack of specificity, and low concentrations. In this study, a surface-enhanced Raman scattering (SERS) chessboard substrate was introduced as a multi-channel platform for the pre-concentration and detection of nanoplastics, achieved by polydomain aggregating silver nanoparticles (PASN) on a hydrophilic and a punched hydrophobic PVDF combined filter membrane. Through a straightforward suction filtration process, nanoplastics were captured by the PASN gap in a single step for subsequent SERS detection, while excess moisture was promptly eliminated from the filter membrane. The PASN-based SERS chessboard substrate, benefiting from the enhanced electromagnetic (EM) field, effectively discriminated polystyrene (PS) nanoplastics ranging in size from 30 nm to 1000 nm. Furthermore, this substrate demonstrated favorable repeatability (RSD of 8.6 %), high sensitivity with a detection limit of 0.001 mg/mL for 100 nm of PS nanoplastics, and broad linear detection ranges spanning from 0.001 to 0.5 mg/mL (R2 = 0.9916). Additionally, the SERS chessboard substrate enabled quantitative analysis of nanoplastics spiked in tap and lake water samples. Notably, the entire pre-concentration and detection procedure required only 3 μL of sample and could be completed within 1 min. With the accessibility of portable detection instruments and the ability to prepare substrates on demand, the PASN-based SERS chessboard substrate is anticipated to facilitate the establishment of a comprehensive global nanoplastics map.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.