用于妇科腹部盆腔肿块分类的优化连体神经网络与深度线性图注意模型。

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Abdominal Radiology Pub Date : 2024-10-24 DOI:10.1007/s00261-024-04633-w
Shaik Khasim Saheb, Devavarapu Sreenivasarao
{"title":"用于妇科腹部盆腔肿块分类的优化连体神经网络与深度线性图注意模型。","authors":"Shaik Khasim Saheb, Devavarapu Sreenivasarao","doi":"10.1007/s00261-024-04633-w","DOIUrl":null,"url":null,"abstract":"<p><p>An adnexal mass, also known as a pelvic mass, is a growth that develops in or near the uterus, ovaries, fallopian tubes, and supporting tissues. For women suspected of having ovarian cancer, timely and accurate detection of a malignant pelvic mass is crucial for effective triage, referral, and follow-up therapy. While various deep learning techniques have been proposed for identifying pelvic masses, current methods are often not accurate enough and can be computationally intensive. To address these issues, this manuscript introduces an optimized Siamese circle-inspired neural network with deep linear graph attention (SCINN-DLGN) model designed for pelvic mass classification. The SCINN-DLGN model is intended to classify pelvic masses into three categories: benign, malignant, and healthy. Initially, real-time MRI pelvic mass images undergo pre-processing using semantic-aware structure-preserving median morpho-filtering to enhance image quality. Following this, the region of interest (ROI) within the pelvic mass images is segmented using an EfficientNet-based U-Net framework, which reduces noise and improves the accuracy of segmentation. The segmented images are then analysed using the SCINN-DLGN model, which extracts geometric features from the ROI. These features are classified into benign, malignant, or healthy categories using a deep clustering algorithm integrated into the linear graph attention model. The proposed system is implemented on a Python platform, and its performance is evaluated using real-time MRI pelvic mass datasets. The SCINN-DLGN model achieves an impressive 99.9% accuracy and 99.8% recall, demonstrating superior efficiency compared to existing methods and highlighting its potential for further advancement in the field.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimized siamese neural network with deep linear graph attention model for gynaecological abdominal pelvic masses classification.\",\"authors\":\"Shaik Khasim Saheb, Devavarapu Sreenivasarao\",\"doi\":\"10.1007/s00261-024-04633-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An adnexal mass, also known as a pelvic mass, is a growth that develops in or near the uterus, ovaries, fallopian tubes, and supporting tissues. For women suspected of having ovarian cancer, timely and accurate detection of a malignant pelvic mass is crucial for effective triage, referral, and follow-up therapy. While various deep learning techniques have been proposed for identifying pelvic masses, current methods are often not accurate enough and can be computationally intensive. To address these issues, this manuscript introduces an optimized Siamese circle-inspired neural network with deep linear graph attention (SCINN-DLGN) model designed for pelvic mass classification. The SCINN-DLGN model is intended to classify pelvic masses into three categories: benign, malignant, and healthy. Initially, real-time MRI pelvic mass images undergo pre-processing using semantic-aware structure-preserving median morpho-filtering to enhance image quality. Following this, the region of interest (ROI) within the pelvic mass images is segmented using an EfficientNet-based U-Net framework, which reduces noise and improves the accuracy of segmentation. The segmented images are then analysed using the SCINN-DLGN model, which extracts geometric features from the ROI. These features are classified into benign, malignant, or healthy categories using a deep clustering algorithm integrated into the linear graph attention model. The proposed system is implemented on a Python platform, and its performance is evaluated using real-time MRI pelvic mass datasets. The SCINN-DLGN model achieves an impressive 99.9% accuracy and 99.8% recall, demonstrating superior efficiency compared to existing methods and highlighting its potential for further advancement in the field.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-024-04633-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04633-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

附件肿块又称盆腔肿块,是指在子宫、卵巢、输卵管和支持组织内或附近生长的肿物。对于怀疑患有卵巢癌的妇女来说,及时准确地检测出恶性盆腔肿块对于有效分诊、转诊和后续治疗至关重要。虽然已经提出了各种深度学习技术来识别盆腔肿块,但目前的方法往往不够准确,而且计算量大。为了解决这些问题,本手稿介绍了一种优化的连环启发神经网络与深度线性图注意(SCINN-DLGN)模型,该模型专为盆腔肿块分类而设计。SCINN-DLGN 模型旨在将盆腔肿块分为三类:良性、恶性和健康。首先,利用语义感知结构保留中值形态过滤技术对实时磁共振成像盆腔肿块图像进行预处理,以提高图像质量。然后,使用基于 EfficientNet 的 U-Net 框架分割盆腔肿块图像中的感兴趣区(ROI),以减少噪声并提高分割的准确性。然后使用 SCINN-DLGN 模型对分割后的图像进行分析,从 ROI 中提取几何特征。利用集成到线性图注意力模型中的深度聚类算法,将这些特征分为良性、恶性或健康类别。所提议的系统在 Python 平台上实现,并使用实时核磁共振成像盆腔肿块数据集对其性能进行了评估。SCINN-DLGN 模型的准确率和召回率分别达到了令人印象深刻的 99.9% 和 99.8%,与现有方法相比显示出更高的效率,并突出了其在该领域进一步发展的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimized siamese neural network with deep linear graph attention model for gynaecological abdominal pelvic masses classification.

An adnexal mass, also known as a pelvic mass, is a growth that develops in or near the uterus, ovaries, fallopian tubes, and supporting tissues. For women suspected of having ovarian cancer, timely and accurate detection of a malignant pelvic mass is crucial for effective triage, referral, and follow-up therapy. While various deep learning techniques have been proposed for identifying pelvic masses, current methods are often not accurate enough and can be computationally intensive. To address these issues, this manuscript introduces an optimized Siamese circle-inspired neural network with deep linear graph attention (SCINN-DLGN) model designed for pelvic mass classification. The SCINN-DLGN model is intended to classify pelvic masses into three categories: benign, malignant, and healthy. Initially, real-time MRI pelvic mass images undergo pre-processing using semantic-aware structure-preserving median morpho-filtering to enhance image quality. Following this, the region of interest (ROI) within the pelvic mass images is segmented using an EfficientNet-based U-Net framework, which reduces noise and improves the accuracy of segmentation. The segmented images are then analysed using the SCINN-DLGN model, which extracts geometric features from the ROI. These features are classified into benign, malignant, or healthy categories using a deep clustering algorithm integrated into the linear graph attention model. The proposed system is implemented on a Python platform, and its performance is evaluated using real-time MRI pelvic mass datasets. The SCINN-DLGN model achieves an impressive 99.9% accuracy and 99.8% recall, demonstrating superior efficiency compared to existing methods and highlighting its potential for further advancement in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
期刊最新文献
Renovascular hypertension - a primer for the radiologist. Assessment of high-risk gastroesophageal varices in cirrhotic patients using quantitative parameters from dual-source dual-energy CT. Dynamic changes of radiological and radiomics patterns based on MRI in viable hepatocellular carcinoma after transarterial chemoembolization. Enhancing bone metastasis prediction in prostate cancer using quantitative mpMRI features, ISUP grade and PSA density: a machine learning approach. Exam quality of ultrasound and dynamic contrast-enhanced abbreviated MRI and impact on early-stage HCC detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1