环境、植物遗传及其相互作用塑造了向日葵根瘤微生物群落的重要方面。

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2024-10-24 DOI:10.1128/aem.01635-24
Clifton P Bueno de Mesquita, Corinne M Walsh, Ziv Attia, Brady D Koehler, Zachary J Tarble, David L Van Tassel, Nolan C Kane, Brent S Hulke
{"title":"环境、植物遗传及其相互作用塑造了向日葵根瘤微生物群落的重要方面。","authors":"Clifton P Bueno de Mesquita, Corinne M Walsh, Ziv Attia, Brady D Koehler, Zachary J Tarble, David L Van Tassel, Nolan C Kane, Brent S Hulke","doi":"10.1128/aem.01635-24","DOIUrl":null,"url":null,"abstract":"<p><p>Associations with soil microorganisms are crucial for plants' overall health and functioning. While much work has been done to understand drivers of rhizosphere microbiome structure and function, the relative importance of geography, climate, soil properties, and plant genetics remains unclear, as results have been mixed and comprehensive studies across many sites and genotypes are limited. Rhizosphere microbiomes are crucial for crop resistance to pathogens, stress tolerance, nutrient availability, and ultimately yield. Here, we quantify the relative roles of plant genotype, environment, and their interaction in shaping soil rhizosphere communities, using 16S and ITS gene sequencing of rhizosphere soils from 10 genotypes of cultivated sunflower (<i>Helianthus annuus</i>) at 15 sites across the Great Plains of the United States. While site generally outweighed genotype overall in terms of effects on archaeal, bacterial, and fungal richness, community composition, and taxa relative abundances, there was also a significant interaction such that genotype exerted a significant influence on archaeal, bacterial, and fungal microbiomes in certain sites. Site effects were attributed to a combination of spatial distance and differences in climate and soil properties. Microbial taxa that were previously associated with resistance to the fungal necrotrophic pathogen <i>Sclerotinia</i> were present in most sites but differed significantly in relative abundance across sites. Our results have implications for plant breeding and agronomic microbiome manipulations for agricultural improvement across different geographic regions.IMPORTANCEDespite the importance of plant breeding in agriculture, we still have a limited understanding of how plant genetic variation shapes soil microbiome composition across broad geographic regions. Using 15 sites across the Great Plains of North America, we show that cultivated sunflower rhizosphere archaeal, bacterial, and fungal communities are driven primarily by site soil and climatic differences, but genotype can interact with site to influence the composition, especially in warmer and drier sites with lower overall microbial richness. We also show that all taxa that were previously found to be associated with resistance to the fungal pathogen <i>Sclerotinia sclerotiorum</i> were widespread but significantly affected by site, while a subset was also significantly affected by genotype. Our results contribute to a broader understanding of rhizosphere archaeal, bacterial, and fungal community assembly and provide foundational knowledge for plant breeding efforts and potential future microbiome manipulations in agriculture.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environment, plant genetics, and their interaction shape important aspects of sunflower rhizosphere microbial communities.\",\"authors\":\"Clifton P Bueno de Mesquita, Corinne M Walsh, Ziv Attia, Brady D Koehler, Zachary J Tarble, David L Van Tassel, Nolan C Kane, Brent S Hulke\",\"doi\":\"10.1128/aem.01635-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Associations with soil microorganisms are crucial for plants' overall health and functioning. While much work has been done to understand drivers of rhizosphere microbiome structure and function, the relative importance of geography, climate, soil properties, and plant genetics remains unclear, as results have been mixed and comprehensive studies across many sites and genotypes are limited. Rhizosphere microbiomes are crucial for crop resistance to pathogens, stress tolerance, nutrient availability, and ultimately yield. Here, we quantify the relative roles of plant genotype, environment, and their interaction in shaping soil rhizosphere communities, using 16S and ITS gene sequencing of rhizosphere soils from 10 genotypes of cultivated sunflower (<i>Helianthus annuus</i>) at 15 sites across the Great Plains of the United States. While site generally outweighed genotype overall in terms of effects on archaeal, bacterial, and fungal richness, community composition, and taxa relative abundances, there was also a significant interaction such that genotype exerted a significant influence on archaeal, bacterial, and fungal microbiomes in certain sites. Site effects were attributed to a combination of spatial distance and differences in climate and soil properties. Microbial taxa that were previously associated with resistance to the fungal necrotrophic pathogen <i>Sclerotinia</i> were present in most sites but differed significantly in relative abundance across sites. Our results have implications for plant breeding and agronomic microbiome manipulations for agricultural improvement across different geographic regions.IMPORTANCEDespite the importance of plant breeding in agriculture, we still have a limited understanding of how plant genetic variation shapes soil microbiome composition across broad geographic regions. Using 15 sites across the Great Plains of North America, we show that cultivated sunflower rhizosphere archaeal, bacterial, and fungal communities are driven primarily by site soil and climatic differences, but genotype can interact with site to influence the composition, especially in warmer and drier sites with lower overall microbial richness. We also show that all taxa that were previously found to be associated with resistance to the fungal pathogen <i>Sclerotinia sclerotiorum</i> were widespread but significantly affected by site, while a subset was also significantly affected by genotype. Our results contribute to a broader understanding of rhizosphere archaeal, bacterial, and fungal community assembly and provide foundational knowledge for plant breeding efforts and potential future microbiome manipulations in agriculture.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.01635-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01635-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与土壤微生物的联系对植物的整体健康和功能至关重要。虽然已经做了很多工作来了解根瘤菌群结构和功能的驱动因素,但地理、气候、土壤特性和植物遗传学的相对重要性仍不清楚,因为结果参差不齐,对许多地点和基因型的全面研究也很有限。根瘤微生物组对作物抵抗病原体、抗逆性、养分供应以及最终产量至关重要。在这里,我们利用 16S 和 ITS 基因测序技术,对美国大平原 15 个地点 10 种基因型的向日葵(Helianthus annuus)根瘤土壤进行了研究,量化了植物基因型、环境及其相互作用在形成土壤根瘤群落中的相对作用。就对古细菌、细菌和真菌丰富度、群落组成和类群相对丰度的影响而言,地点总体上大于基因型,但也存在显著的交互作用,即基因型对某些地点的古细菌、细菌和真菌微生物群有显著影响。地点效应归因于空间距离以及气候和土壤特性的差异。以前与抵抗真菌坏死性病原体 Sclerotinia 有关的微生物类群出现在大多数地点,但不同地点的相对丰度有显著差异。重要意义尽管植物育种在农业中非常重要,但我们对植物遗传变异如何影响不同地理区域土壤微生物组组成的了解仍然有限。我们利用横跨北美大平原的 15 个地点研究表明,栽培向日葵根瘤菌群落中的古细菌、细菌和真菌群落主要受地点土壤和气候差异的影响,但基因型会与地点相互作用,影响微生物群落的组成,尤其是在微生物总体丰富度较低的温暖干燥地点。我们的研究还表明,以前发现的与真菌病原体硬孢菌抗性相关的所有类群都很普遍,但受地点的影响很大,而一个子集也受基因型的显著影响。我们的研究结果有助于人们更广泛地了解根瘤菌圈古细菌、细菌和真菌群落的组成,并为植物育种工作和未来在农业中潜在的微生物组操作提供了基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environment, plant genetics, and their interaction shape important aspects of sunflower rhizosphere microbial communities.

Associations with soil microorganisms are crucial for plants' overall health and functioning. While much work has been done to understand drivers of rhizosphere microbiome structure and function, the relative importance of geography, climate, soil properties, and plant genetics remains unclear, as results have been mixed and comprehensive studies across many sites and genotypes are limited. Rhizosphere microbiomes are crucial for crop resistance to pathogens, stress tolerance, nutrient availability, and ultimately yield. Here, we quantify the relative roles of plant genotype, environment, and their interaction in shaping soil rhizosphere communities, using 16S and ITS gene sequencing of rhizosphere soils from 10 genotypes of cultivated sunflower (Helianthus annuus) at 15 sites across the Great Plains of the United States. While site generally outweighed genotype overall in terms of effects on archaeal, bacterial, and fungal richness, community composition, and taxa relative abundances, there was also a significant interaction such that genotype exerted a significant influence on archaeal, bacterial, and fungal microbiomes in certain sites. Site effects were attributed to a combination of spatial distance and differences in climate and soil properties. Microbial taxa that were previously associated with resistance to the fungal necrotrophic pathogen Sclerotinia were present in most sites but differed significantly in relative abundance across sites. Our results have implications for plant breeding and agronomic microbiome manipulations for agricultural improvement across different geographic regions.IMPORTANCEDespite the importance of plant breeding in agriculture, we still have a limited understanding of how plant genetic variation shapes soil microbiome composition across broad geographic regions. Using 15 sites across the Great Plains of North America, we show that cultivated sunflower rhizosphere archaeal, bacterial, and fungal communities are driven primarily by site soil and climatic differences, but genotype can interact with site to influence the composition, especially in warmer and drier sites with lower overall microbial richness. We also show that all taxa that were previously found to be associated with resistance to the fungal pathogen Sclerotinia sclerotiorum were widespread but significantly affected by site, while a subset was also significantly affected by genotype. Our results contribute to a broader understanding of rhizosphere archaeal, bacterial, and fungal community assembly and provide foundational knowledge for plant breeding efforts and potential future microbiome manipulations in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Assessing horizontal gene transfer in the rhizosphere of Brachypodium distachyon using fabricated ecosystems (EcoFABs). Salmonella dry surface biofilm: morphology, single-cell landscape, and sanitization. Erratum for Hu et al., "Exploring functional genes' correlation with (S)-equol concentration and new daidzein racemase identification". Fire-associated microbial shifts in soils of western conifer forests with Armillaria root disease. Insights into the regulatory mechanisms and application prospects of the transcription factor Cra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1