用于在密闭家庭环境中协调自力翻身的全局制导双臂反应式运动控制器。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-10-16 DOI:10.3390/biomimetics9100629
Zihang Geng, Zhiyuan Yang, Wei Xu, Weichao Guo, Xinjun Sheng
{"title":"用于在密闭家庭环境中协调自力翻身的全局制导双臂反应式运动控制器。","authors":"Zihang Geng, Zhiyuan Yang, Wei Xu, Weichao Guo, Xinjun Sheng","doi":"10.3390/biomimetics9100629","DOIUrl":null,"url":null,"abstract":"<p><p>Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods. In this framework, a global planner module with a prospective task horizon provides feasible guidance in a Cartesian space, and a local reactive controller module addresses real-time collision avoidance and coordinated task constraints through the exploitation of dual-arm redundancy. GGDRC extends the start-of-the-art optimization-based reactive method for motion-restricted dynamic scenarios requiring dual-arm cooperation. We design a pick-handover-place task to compare the performances of these two methods. Results demonstrate that GGDRC exhibits accurate collision avoidance precision (5 mm) and a high success rate (84.5%).</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506656/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Globally Guided Dual-Arm Reactive Motion Controller for Coordinated Self-Handover in a Confined Domestic Environment.\",\"authors\":\"Zihang Geng, Zhiyuan Yang, Wei Xu, Weichao Guo, Xinjun Sheng\",\"doi\":\"10.3390/biomimetics9100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods. In this framework, a global planner module with a prospective task horizon provides feasible guidance in a Cartesian space, and a local reactive controller module addresses real-time collision avoidance and coordinated task constraints through the exploitation of dual-arm redundancy. GGDRC extends the start-of-the-art optimization-based reactive method for motion-restricted dynamic scenarios requiring dual-arm cooperation. We design a pick-handover-place task to compare the performances of these two methods. Results demonstrate that GGDRC exhibits accurate collision avoidance precision (5 mm) and a high success rate (84.5%).</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506656/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9100629\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100629","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

未来的仿人机器人将广泛应用于我们的日常生活。在非结构化、封闭和以人为中心的环境中,利用双臂机器人的灵巧性和合作能力进行运动规划和控制仍是一个未决问题。我们提出的全局引导双臂反应式运动控制器(GGDRC)结合了全局规划和反应式方法的优势。在这一框架中,具有前瞻性任务视野的全局规划模块在笛卡尔空间中提供可行的指导,而局部反应式控制器模块则通过利用双臂冗余来解决实时避免碰撞和协调任务约束的问题。GGDRC 扩展了最先进的基于优化的反应方法,适用于需要双臂合作的运动受限动态场景。我们设计了一个拾取-移交-放置任务来比较这两种方法的性能。结果表明,GGDRC 具有精确的避撞精度(5 毫米)和较高的成功率(84.5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Globally Guided Dual-Arm Reactive Motion Controller for Coordinated Self-Handover in a Confined Domestic Environment.

Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods. In this framework, a global planner module with a prospective task horizon provides feasible guidance in a Cartesian space, and a local reactive controller module addresses real-time collision avoidance and coordinated task constraints through the exploitation of dual-arm redundancy. GGDRC extends the start-of-the-art optimization-based reactive method for motion-restricted dynamic scenarios requiring dual-arm cooperation. We design a pick-handover-place task to compare the performances of these two methods. Results demonstrate that GGDRC exhibits accurate collision avoidance precision (5 mm) and a high success rate (84.5%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Brain-Inspired Architecture for Spiking Neural Networks. Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection. Path Planning of an Unmanned Aerial Vehicle Based on a Multi-Strategy Improved Pelican Optimization Algorithm. Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1