通过小型人工智能计算系统和立体相机实现的机器人姿态估计,以进行精度评估。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-10-09 DOI:10.3390/biomimetics9100610
Marco-Antonio Cabrera-Rufino, Juan-Manuel Ramos-Arreguín, Marco-Antonio Aceves-Fernandez, Efren Gorrostieta-Hurtado, Jesus-Carlos Pedraza-Ortega, Juvenal Rodríguez-Resendiz
{"title":"通过小型人工智能计算系统和立体相机实现的机器人姿态估计,以进行精度评估。","authors":"Marco-Antonio Cabrera-Rufino, Juan-Manuel Ramos-Arreguín, Marco-Antonio Aceves-Fernandez, Efren Gorrostieta-Hurtado, Jesus-Carlos Pedraza-Ortega, Juvenal Rodríguez-Resendiz","doi":"10.3390/biomimetics9100610","DOIUrl":null,"url":null,"abstract":"<p><p>The precision of robotic manipulators in the industrial or medical field is very important, especially when it comes to repetitive or exhaustive tasks. Geometric deformations are the most common in this field. For this reason, new robotic vision techniques have been proposed, including 3D methods that made it possible to determine the geometric distances between the parts of a robotic manipulator. The aim of this work is to measure the angular position of a robotic arm with six degrees of freedom. For this purpose, a stereo camera and a convolutional neural network algorithm are used to reduce the degradation of precision caused by geometric errors. This method is not intended to replace encoders, but to enhance accuracy by compensating for degradation through an intelligent visual measurement system. The camera is tested and the accuracy is about one millimeter. The implementation of this method leads to better results than traditional and simple neural network methods.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505535/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pose Estimation of a Cobot Implemented on a Small AI-Powered Computing System and a Stereo Camera for Precision Evaluation.\",\"authors\":\"Marco-Antonio Cabrera-Rufino, Juan-Manuel Ramos-Arreguín, Marco-Antonio Aceves-Fernandez, Efren Gorrostieta-Hurtado, Jesus-Carlos Pedraza-Ortega, Juvenal Rodríguez-Resendiz\",\"doi\":\"10.3390/biomimetics9100610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precision of robotic manipulators in the industrial or medical field is very important, especially when it comes to repetitive or exhaustive tasks. Geometric deformations are the most common in this field. For this reason, new robotic vision techniques have been proposed, including 3D methods that made it possible to determine the geometric distances between the parts of a robotic manipulator. The aim of this work is to measure the angular position of a robotic arm with six degrees of freedom. For this purpose, a stereo camera and a convolutional neural network algorithm are used to reduce the degradation of precision caused by geometric errors. This method is not intended to replace encoders, but to enhance accuracy by compensating for degradation through an intelligent visual measurement system. The camera is tested and the accuracy is about one millimeter. The implementation of this method leads to better results than traditional and simple neural network methods.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505535/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9100610\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100610","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在工业或医疗领域,机器人机械手的精度非常重要,尤其是在执行重复或繁重的任务时。几何变形是这一领域最常见的问题。因此,人们提出了新的机器人视觉技术,包括三维方法,从而可以确定机器人机械手部件之间的几何距离。这项工作的目的是测量具有六个自由度的机械臂的角度位置。为此,我们使用了立体摄像机和卷积神经网络算法,以减少几何误差造成的精度下降。这种方法的目的不是取代编码器,而是通过智能视觉测量系统对精度下降进行补偿,从而提高精度。经测试,相机的精度约为一毫米。与传统和简单的神经网络方法相比,这种方法的实施能带来更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pose Estimation of a Cobot Implemented on a Small AI-Powered Computing System and a Stereo Camera for Precision Evaluation.

The precision of robotic manipulators in the industrial or medical field is very important, especially when it comes to repetitive or exhaustive tasks. Geometric deformations are the most common in this field. For this reason, new robotic vision techniques have been proposed, including 3D methods that made it possible to determine the geometric distances between the parts of a robotic manipulator. The aim of this work is to measure the angular position of a robotic arm with six degrees of freedom. For this purpose, a stereo camera and a convolutional neural network algorithm are used to reduce the degradation of precision caused by geometric errors. This method is not intended to replace encoders, but to enhance accuracy by compensating for degradation through an intelligent visual measurement system. The camera is tested and the accuracy is about one millimeter. The implementation of this method leads to better results than traditional and simple neural network methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Brain-Inspired Architecture for Spiking Neural Networks. Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection. Path Planning of an Unmanned Aerial Vehicle Based on a Multi-Strategy Improved Pelican Optimization Algorithm. Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1