Jingzu Li, Botao Wang, Lei Zhang, Yaping Ma, Lihua Song, Bing Cao
{"title":"野生枣耐旱性状的全基因组研究","authors":"Jingzu Li, Botao Wang, Lei Zhang, Yaping Ma, Lihua Song, Bing Cao","doi":"10.1186/s12870-024-05680-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wild jujube trees in Ningxia, China, demonstrate exceptional drought tolerance. The identification of quantitative trait loci (QTLs) associated with drought resistance and linked genes could significantly enhance molecular breeding efforts for this species. This study involved the measurement of nine drought resistance indicators were measured in 150 wild jujube trees from five regions in Ningxia. Genome-wide association studies (GWAS) were carried out using a range of mixed linear models to pinpoint SNP markers linked to drought resistance.</p><p><strong>Results: </strong>The coefficients of variation for the nine leaf traits in wild jujube trees ranged from 14.76 to 62.17%, with broad-sense heritability estimates falling between 0.84 and 0.99. Through GWAS analysis, a total of 12 significant SNPs and 162 potential genes associated with drought resistance were detected. This SNPs explained phenotypic variance ranging from 20.74 to 50.37%. Gene Ontology (GO) functional annotation highlighted five crucial candidate genes‒ZjMYB44, ZjUCLOC, ZjDnaJ50, ZjUCHL22 and ZjHSFB‒linked to drought tolerance in wild jujube. These genes demonstrated a positive correlation with drought tolerance within the wild jujube population.</p><p><strong>Conclusions: </strong>Our findings indicate that these five genes likely play a pivotal role in conferring drought tolerance in wild jujubes. This study offers new insights to support the development of drought-resistant jujube varieties, thereby contributing to sustainable agricultural practices and bolstering food security in arid regions.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide study of drought tolerance traits in wild jujube.\",\"authors\":\"Jingzu Li, Botao Wang, Lei Zhang, Yaping Ma, Lihua Song, Bing Cao\",\"doi\":\"10.1186/s12870-024-05680-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Wild jujube trees in Ningxia, China, demonstrate exceptional drought tolerance. The identification of quantitative trait loci (QTLs) associated with drought resistance and linked genes could significantly enhance molecular breeding efforts for this species. This study involved the measurement of nine drought resistance indicators were measured in 150 wild jujube trees from five regions in Ningxia. Genome-wide association studies (GWAS) were carried out using a range of mixed linear models to pinpoint SNP markers linked to drought resistance.</p><p><strong>Results: </strong>The coefficients of variation for the nine leaf traits in wild jujube trees ranged from 14.76 to 62.17%, with broad-sense heritability estimates falling between 0.84 and 0.99. Through GWAS analysis, a total of 12 significant SNPs and 162 potential genes associated with drought resistance were detected. This SNPs explained phenotypic variance ranging from 20.74 to 50.37%. Gene Ontology (GO) functional annotation highlighted five crucial candidate genes‒ZjMYB44, ZjUCLOC, ZjDnaJ50, ZjUCHL22 and ZjHSFB‒linked to drought tolerance in wild jujube. These genes demonstrated a positive correlation with drought tolerance within the wild jujube population.</p><p><strong>Conclusions: </strong>Our findings indicate that these five genes likely play a pivotal role in conferring drought tolerance in wild jujubes. This study offers new insights to support the development of drought-resistant jujube varieties, thereby contributing to sustainable agricultural practices and bolstering food security in arid regions.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-024-05680-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05680-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Genome-wide study of drought tolerance traits in wild jujube.
Background: Wild jujube trees in Ningxia, China, demonstrate exceptional drought tolerance. The identification of quantitative trait loci (QTLs) associated with drought resistance and linked genes could significantly enhance molecular breeding efforts for this species. This study involved the measurement of nine drought resistance indicators were measured in 150 wild jujube trees from five regions in Ningxia. Genome-wide association studies (GWAS) were carried out using a range of mixed linear models to pinpoint SNP markers linked to drought resistance.
Results: The coefficients of variation for the nine leaf traits in wild jujube trees ranged from 14.76 to 62.17%, with broad-sense heritability estimates falling between 0.84 and 0.99. Through GWAS analysis, a total of 12 significant SNPs and 162 potential genes associated with drought resistance were detected. This SNPs explained phenotypic variance ranging from 20.74 to 50.37%. Gene Ontology (GO) functional annotation highlighted five crucial candidate genes‒ZjMYB44, ZjUCLOC, ZjDnaJ50, ZjUCHL22 and ZjHSFB‒linked to drought tolerance in wild jujube. These genes demonstrated a positive correlation with drought tolerance within the wild jujube population.
Conclusions: Our findings indicate that these five genes likely play a pivotal role in conferring drought tolerance in wild jujubes. This study offers new insights to support the development of drought-resistant jujube varieties, thereby contributing to sustainable agricultural practices and bolstering food security in arid regions.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.