制备和构建针对蜱传脑炎病毒 E 蛋白的嵌合人源化广谱反应性抗体 10H10。

IF 0.9 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL Bulletin of Experimental Biology and Medicine Pub Date : 2024-10-01 Epub Date: 2024-10-23 DOI:10.1007/s10517-024-06265-y
D V Shanshin, V S Nesmeyanova, E V Protopopova, A A Shelemba, V B Loktev, D N Shcherbakov
{"title":"制备和构建针对蜱传脑炎病毒 E 蛋白的嵌合人源化广谱反应性抗体 10H10。","authors":"D V Shanshin, V S Nesmeyanova, E V Protopopova, A A Shelemba, V B Loktev, D N Shcherbakov","doi":"10.1007/s10517-024-06265-y","DOIUrl":null,"url":null,"abstract":"<p><p>A full-length humanized chimeric antibody 10H10ch that specifically interacts with the surface glycoprotein E of flaviviruses was obtained. To construct it, we used variable fragments of the heavy and light chains of the monoclonal antibody 10H10 that form the active center of the antibody and a fragment of the constant part of the heavy chain of the human IgG1 antibody. The resulting full-length chimeric humanized antibody 10H10ch specifically interacted with the E protein of flaviviruses pathogenic to humans, such as tick-borne encephalitis, Zika, West Nile, and dengue viruses. An immunochemical assessment of the interaction constants of the 10H10ch antibody with a panel of native and recombinant flavivirus antigens by ELISA and biolayer interferometry showed that the dissociation constant (Kd) of the chimeric antibody is in the nanomolar region and is comparable to that of the high-affinity mouse monoclonal antibody 10H10. The possibility of using the resulting chimeric humanized antibody 10H10ch for the diagnosis, prevention, and treatment of various flavivirus infections is discussed.</p>","PeriodicalId":9331,"journal":{"name":"Bulletin of Experimental Biology and Medicine","volume":" ","pages":"770-773"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Construction of Chimeric Humanized Broadly Reactive Antibody 10H10 to Protein E of Tick-Borne Encephalitis Virus.\",\"authors\":\"D V Shanshin, V S Nesmeyanova, E V Protopopova, A A Shelemba, V B Loktev, D N Shcherbakov\",\"doi\":\"10.1007/s10517-024-06265-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A full-length humanized chimeric antibody 10H10ch that specifically interacts with the surface glycoprotein E of flaviviruses was obtained. To construct it, we used variable fragments of the heavy and light chains of the monoclonal antibody 10H10 that form the active center of the antibody and a fragment of the constant part of the heavy chain of the human IgG1 antibody. The resulting full-length chimeric humanized antibody 10H10ch specifically interacted with the E protein of flaviviruses pathogenic to humans, such as tick-borne encephalitis, Zika, West Nile, and dengue viruses. An immunochemical assessment of the interaction constants of the 10H10ch antibody with a panel of native and recombinant flavivirus antigens by ELISA and biolayer interferometry showed that the dissociation constant (Kd) of the chimeric antibody is in the nanomolar region and is comparable to that of the high-affinity mouse monoclonal antibody 10H10. The possibility of using the resulting chimeric humanized antibody 10H10ch for the diagnosis, prevention, and treatment of various flavivirus infections is discussed.</p>\",\"PeriodicalId\":9331,\"journal\":{\"name\":\"Bulletin of Experimental Biology and Medicine\",\"volume\":\" \",\"pages\":\"770-773\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10517-024-06265-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10517-024-06265-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了能与黄病毒表面糖蛋白 E 特异性相互作用的全长人源化嵌合抗体 10H10ch。为了构建该抗体,我们使用了构成抗体活性中心的单克隆抗体 10H10 重链和轻链的可变片段,以及人类 IgG1 抗体重链恒定部分的片段。由此产生的全长嵌合人源化抗体 10H10ch 能与对人类致病的黄病毒(如蜱传脑炎、寨卡病毒、西尼罗河病毒和登革热病毒)的 E 蛋白发生特异性相互作用。通过 ELISA 和生物层干涉测量法对 10H10ch 抗体与一系列原生和重组黄病毒抗原的相互作用常数进行的免疫化学评估表明,嵌合抗体的解离常数(Kd)在纳摩尔区,与高亲和力小鼠单克隆抗体 10H10 的解离常数相当。本文讨论了将所制备的嵌合人源化抗体 10H10ch 用于诊断、预防和治疗各种黄病毒感染的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Construction of Chimeric Humanized Broadly Reactive Antibody 10H10 to Protein E of Tick-Borne Encephalitis Virus.

A full-length humanized chimeric antibody 10H10ch that specifically interacts with the surface glycoprotein E of flaviviruses was obtained. To construct it, we used variable fragments of the heavy and light chains of the monoclonal antibody 10H10 that form the active center of the antibody and a fragment of the constant part of the heavy chain of the human IgG1 antibody. The resulting full-length chimeric humanized antibody 10H10ch specifically interacted with the E protein of flaviviruses pathogenic to humans, such as tick-borne encephalitis, Zika, West Nile, and dengue viruses. An immunochemical assessment of the interaction constants of the 10H10ch antibody with a panel of native and recombinant flavivirus antigens by ELISA and biolayer interferometry showed that the dissociation constant (Kd) of the chimeric antibody is in the nanomolar region and is comparable to that of the high-affinity mouse monoclonal antibody 10H10. The possibility of using the resulting chimeric humanized antibody 10H10ch for the diagnosis, prevention, and treatment of various flavivirus infections is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Experimental Biology and Medicine
Bulletin of Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
1.50
自引率
14.30%
发文量
265
审稿时长
2 months
期刊介绍: Bulletin of Experimental Biology and Medicine presents original peer reviewed research papers and brief reports on priority new research results in physiology, biochemistry, biophysics, pharmacology, immunology, microbiology, genetics, oncology, etc. Novel trends in science are covered in new sections of the journal - Biogerontology and Human Ecology - that first appeared in 2005. World scientific interest in stem cells prompted inclusion into Bulletin of Experimental Biology and Medicine a quarterly scientific journal Cell Technologies in Biology and Medicine (a new Russian Academy of Medical Sciences publication since 2005). It publishes only original papers from the leading research institutions on molecular biology of stem and progenitor cells, stem cell as the basis of gene therapy, molecular language of cell-to-cell communication, cytokines, chemokines, growth and other factors, pilot projects on clinical use of stem and progenitor cells. The Russian Volume Year is published in English from April.
期刊最新文献
Ventral Root Boundary Cap Cells of Rat Spinal Cord Contain Connexin-43. Experimental Study of Products Based on Biocompatible Polymer Material from Methacrylic Oligomers as a Potential Barrier for Preventing Adhesions in Cardiac Surgery. Expression of Immunohistochemical Markers in the Walls of Pelvic Varicose Veins in Women. Mesenchymal Properties of Glioma Cell Lines. Morphological and Molecular-Biological Features of Lewis Lung Carcinoma Progression in Mice with Different Resistance to Hypoxia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1