{"title":"STUB1 介导的 NSUN2 泛素化和降解通过减少 Gpx4 mRNA 的 m5C 甲基化促进肝细胞铁变态反应。","authors":"Xiaotian Zhang, Yihua Zhang, Rongrong Li, Yibo Li, Qi Wang, Ying Wang, Xinying Chen, Weihua Wang, Erli Pang, Yanyan Li, Jia Wang, Jinping Zheng, Junjie Zhang","doi":"10.1016/j.celrep.2024.114885","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent cell death that occurs due to the peroxidation of phospholipids in the cell membrane. In this study, we find that the protein level of NSUN2 is significantly decreased in hepatocyte ferroptosis. This is attributed to STUB1-mediated ubiquitination of NSUN2 at lysines 457 and 654, promoting NSUN2 degradation in ferroptosis. Selenoprotein glutathione peroxidase 4 (GPX4) is a prominent suppressor of ferroptosis. We find that downregulation of NSUN2 diminishes m<sup>5</sup>C methylation of Gpx4 mRNA 3' UTR. The reduction of NSUN2-mediated Gpx4 mRNA m<sup>5</sup>C methylation abrogates the interaction between SBP2 and the selenocysteine insertion sequence (SECIS) and leads to inhibition of GPX4 protein expression. Lower GPX4 expression promotes hepatocyte ferroptosis in vivo and in vitro, which is reversed by restoration of NSUN2. These findings shed light on the mechanism of NSUN2 degradation and also indicate that the STUB1-NSUN2-GPX4 axis plays a regulatory role in hepatocyte ferroptosis.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114885"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUB1-mediated ubiquitination and degradation of NSUN2 promotes hepatocyte ferroptosis by decreasing m<sup>5</sup>C methylation of Gpx4 mRNA.\",\"authors\":\"Xiaotian Zhang, Yihua Zhang, Rongrong Li, Yibo Li, Qi Wang, Ying Wang, Xinying Chen, Weihua Wang, Erli Pang, Yanyan Li, Jia Wang, Jinping Zheng, Junjie Zhang\",\"doi\":\"10.1016/j.celrep.2024.114885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is an iron-dependent cell death that occurs due to the peroxidation of phospholipids in the cell membrane. In this study, we find that the protein level of NSUN2 is significantly decreased in hepatocyte ferroptosis. This is attributed to STUB1-mediated ubiquitination of NSUN2 at lysines 457 and 654, promoting NSUN2 degradation in ferroptosis. Selenoprotein glutathione peroxidase 4 (GPX4) is a prominent suppressor of ferroptosis. We find that downregulation of NSUN2 diminishes m<sup>5</sup>C methylation of Gpx4 mRNA 3' UTR. The reduction of NSUN2-mediated Gpx4 mRNA m<sup>5</sup>C methylation abrogates the interaction between SBP2 and the selenocysteine insertion sequence (SECIS) and leads to inhibition of GPX4 protein expression. Lower GPX4 expression promotes hepatocyte ferroptosis in vivo and in vitro, which is reversed by restoration of NSUN2. These findings shed light on the mechanism of NSUN2 degradation and also indicate that the STUB1-NSUN2-GPX4 axis plays a regulatory role in hepatocyte ferroptosis.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"43 11\",\"pages\":\"114885\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114885\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114885","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
STUB1-mediated ubiquitination and degradation of NSUN2 promotes hepatocyte ferroptosis by decreasing m5C methylation of Gpx4 mRNA.
Ferroptosis is an iron-dependent cell death that occurs due to the peroxidation of phospholipids in the cell membrane. In this study, we find that the protein level of NSUN2 is significantly decreased in hepatocyte ferroptosis. This is attributed to STUB1-mediated ubiquitination of NSUN2 at lysines 457 and 654, promoting NSUN2 degradation in ferroptosis. Selenoprotein glutathione peroxidase 4 (GPX4) is a prominent suppressor of ferroptosis. We find that downregulation of NSUN2 diminishes m5C methylation of Gpx4 mRNA 3' UTR. The reduction of NSUN2-mediated Gpx4 mRNA m5C methylation abrogates the interaction between SBP2 and the selenocysteine insertion sequence (SECIS) and leads to inhibition of GPX4 protein expression. Lower GPX4 expression promotes hepatocyte ferroptosis in vivo and in vitro, which is reversed by restoration of NSUN2. These findings shed light on the mechanism of NSUN2 degradation and also indicate that the STUB1-NSUN2-GPX4 axis plays a regulatory role in hepatocyte ferroptosis.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.