Majid Khan, Sobia Ahsan Halim, Najeeb Ur Rehman, Ajmal Khan, Simon Gibbons, Rene Csuk, Jalal Uddin, Ahmed Al-Harrasi
{"title":"芦荟树脂天然产物的新型抗肿瘤作用及其体内/体外靶向碳酸酐酶 II 和 IX 的机制","authors":"Majid Khan, Sobia Ahsan Halim, Najeeb Ur Rehman, Ajmal Khan, Simon Gibbons, Rene Csuk, Jalal Uddin, Ahmed Al-Harrasi","doi":"10.1002/cbdv.202401978","DOIUrl":null,"url":null,"abstract":"<p><p>Human carbonic anhydrase (hCA) plays a vital role in the development and progression of tumors in hypoxic conditions. Herein we report the hCA-II and hCA-IX activities of natural products isolated from Aloe vera (L.) Burm.f., to know their potential in tumors. These isolated compounds (1-10) displayed varying degrees of inhibition against hCA-II and hCA-IX. All the compounds showed potent activity against hCA-IX with IC<sub>50</sub> values in the range of 2.9-29.1 μM. While for hCA-II, compounds 1, 2, 5-10 exhibited IC<sub>50</sub> in the range of 4.7-23.4 μM. The most effective hCA IX and II inhibitors, 2 and 5, were chosen for in vitro mechanism studies, revealing that they are competitive inhibitors. Furthermore, when tested for their cytotoxic effect on BJ (normal) cell line, all the compounds showed no cytotoxic behavior, while on Prostate cancer cells (PC-3), compounds 1, 3, 5, 7, and 9 exhibited significant antiproliferative activity. Molecular docking was also conducted within the hCA IX and hCA-II active sites to observe their binding capability. Compounds 1, 5, 7, and 9 were active against both isozymes of hCA and in the PC-3 cell line, therefore these are the best choices for further in vivo studies.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202401978"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Anti-Tumor Effect of Natural Products from Aloe vera Resin and their In-Vitro/In-Silico Targeting Mechanism of Carbonic Anhydrase-II and IX.\",\"authors\":\"Majid Khan, Sobia Ahsan Halim, Najeeb Ur Rehman, Ajmal Khan, Simon Gibbons, Rene Csuk, Jalal Uddin, Ahmed Al-Harrasi\",\"doi\":\"10.1002/cbdv.202401978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human carbonic anhydrase (hCA) plays a vital role in the development and progression of tumors in hypoxic conditions. Herein we report the hCA-II and hCA-IX activities of natural products isolated from Aloe vera (L.) Burm.f., to know their potential in tumors. These isolated compounds (1-10) displayed varying degrees of inhibition against hCA-II and hCA-IX. All the compounds showed potent activity against hCA-IX with IC<sub>50</sub> values in the range of 2.9-29.1 μM. While for hCA-II, compounds 1, 2, 5-10 exhibited IC<sub>50</sub> in the range of 4.7-23.4 μM. The most effective hCA IX and II inhibitors, 2 and 5, were chosen for in vitro mechanism studies, revealing that they are competitive inhibitors. Furthermore, when tested for their cytotoxic effect on BJ (normal) cell line, all the compounds showed no cytotoxic behavior, while on Prostate cancer cells (PC-3), compounds 1, 3, 5, 7, and 9 exhibited significant antiproliferative activity. Molecular docking was also conducted within the hCA IX and hCA-II active sites to observe their binding capability. Compounds 1, 5, 7, and 9 were active against both isozymes of hCA and in the PC-3 cell line, therefore these are the best choices for further in vivo studies.</p>\",\"PeriodicalId\":9878,\"journal\":{\"name\":\"Chemistry & Biodiversity\",\"volume\":\" \",\"pages\":\"e202401978\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Biodiversity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cbdv.202401978\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cbdv.202401978","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel Anti-Tumor Effect of Natural Products from Aloe vera Resin and their In-Vitro/In-Silico Targeting Mechanism of Carbonic Anhydrase-II and IX.
Human carbonic anhydrase (hCA) plays a vital role in the development and progression of tumors in hypoxic conditions. Herein we report the hCA-II and hCA-IX activities of natural products isolated from Aloe vera (L.) Burm.f., to know their potential in tumors. These isolated compounds (1-10) displayed varying degrees of inhibition against hCA-II and hCA-IX. All the compounds showed potent activity against hCA-IX with IC50 values in the range of 2.9-29.1 μM. While for hCA-II, compounds 1, 2, 5-10 exhibited IC50 in the range of 4.7-23.4 μM. The most effective hCA IX and II inhibitors, 2 and 5, were chosen for in vitro mechanism studies, revealing that they are competitive inhibitors. Furthermore, when tested for their cytotoxic effect on BJ (normal) cell line, all the compounds showed no cytotoxic behavior, while on Prostate cancer cells (PC-3), compounds 1, 3, 5, 7, and 9 exhibited significant antiproliferative activity. Molecular docking was also conducted within the hCA IX and hCA-II active sites to observe their binding capability. Compounds 1, 5, 7, and 9 were active against both isozymes of hCA and in the PC-3 cell line, therefore these are the best choices for further in vivo studies.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.