F. Safia Kariapper, Flavia Miccolis, Samantha L. Pilicer, Christian Wolf
{"title":"用异肽对胺进行光电传感","authors":"F. Safia Kariapper, Flavia Miccolis, Samantha L. Pilicer, Christian Wolf","doi":"10.1002/chir.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Isatins are extensively researched compounds with diverse applications, particularly as synthetic precursors in pharmaceutical developments. However, their use as optical probes for enantioselective sensing of chiral amines has not been explored to date. Herein, we present a novel chiroptical assay with an optimized isatin that generates strong, red-shifted circular dichroism (CD) signals at approximately 380 nm upon ketimine formation with chiral amines. The intensity of the induced CD signal increases linearly with the enantiomeric excess of the analyte and thus allows quantitative chirality analysis. The general usefulness of this approach is demonstrated with a broad range of aliphatic and aromatic chiral amines, and by accurate determination of the enantiomeric composition of 10 samples.</p>\n </div>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiroptical Sensing of Amines With Isatins\",\"authors\":\"F. Safia Kariapper, Flavia Miccolis, Samantha L. Pilicer, Christian Wolf\",\"doi\":\"10.1002/chir.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Isatins are extensively researched compounds with diverse applications, particularly as synthetic precursors in pharmaceutical developments. However, their use as optical probes for enantioselective sensing of chiral amines has not been explored to date. Herein, we present a novel chiroptical assay with an optimized isatin that generates strong, red-shifted circular dichroism (CD) signals at approximately 380 nm upon ketimine formation with chiral amines. The intensity of the induced CD signal increases linearly with the enantiomeric excess of the analyte and thus allows quantitative chirality analysis. The general usefulness of this approach is demonstrated with a broad range of aliphatic and aromatic chiral amines, and by accurate determination of the enantiomeric composition of 10 samples.</p>\\n </div>\",\"PeriodicalId\":10170,\"journal\":{\"name\":\"Chirality\",\"volume\":\"36 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chirality\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/chir.70002\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.70002","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
异汀类化合物是一种应用广泛的化合物,尤其是作为合成前体用于医药开发。然而,迄今为止,还没有人探索过将它们用作光学探针来对手性胺进行对映选择性检测。在本文中,我们介绍了一种新型的环光检测方法,该方法采用了一种优化的异atin,当酮亚胺与手性胺形成时,会在大约 380 纳米波长处产生强烈的红移圆二色性(CD)信号。诱导 CD 信号的强度随分析物的对映体过量而线性增加,因此可以进行手性定量分析。通过对 10 个样品对映体组成的精确测定,证明了这种方法在广泛的脂肪族和芳香族手性胺中的普遍实用性。
Isatins are extensively researched compounds with diverse applications, particularly as synthetic precursors in pharmaceutical developments. However, their use as optical probes for enantioselective sensing of chiral amines has not been explored to date. Herein, we present a novel chiroptical assay with an optimized isatin that generates strong, red-shifted circular dichroism (CD) signals at approximately 380 nm upon ketimine formation with chiral amines. The intensity of the induced CD signal increases linearly with the enantiomeric excess of the analyte and thus allows quantitative chirality analysis. The general usefulness of this approach is demonstrated with a broad range of aliphatic and aromatic chiral amines, and by accurate determination of the enantiomeric composition of 10 samples.
期刊介绍:
The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties.
Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.