Yuri E M van der Burgt, Fred P H T M Romijn, Maxim M Treep, L Renee Ruhaak, Christa M Cobbaert
{"title":"在基于质谱的蛋白质定量中验证等摩尔肽释放的策略,以脂蛋白(a)为例。","authors":"Yuri E M van der Burgt, Fred P H T M Romijn, Maxim M Treep, L Renee Ruhaak, Christa M Cobbaert","doi":"10.1515/cclm-2024-0539","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Quantitative protein mass spectrometry (MS) is ideally suited for precision diagnostics and for reference standardization of protein analytes. At the Leiden Apolipoprotein Reference Laboratory we apply MS strategies to obtain detailed insight into the protein-to-peptide conversion in order to verify that quantifier peptides are not partly concealed in miscleaved protein backbone.</p><p><strong>Methods: </strong>Apolipoprotein(a) (apo(a)) was digested in a non-optimal manner to enhance the number of miscleaved peptides that were identified by high resolution liquid chromatography tandem-MS measurements. The protein-to-peptide conversion was carefully mapped with specific attention for miscleaved peptides that contain an apo(a) quantifier peptide. Four different isotopologues of each apo(a)-quantifier peptide were applied to evaluate linearity of internal peptide standards during measurement of specific real-life samples.</p><p><strong>Results: </strong>Two apo(a) quantifier peptides that were concealed in two different miscleaved peptides were included into a multiple reaction monitoring list in our targeted MS-based apo(a) quantifications to alert for potential protein digestion discrepancies. The presence of miscleaved peptides could be ruled out when applying our candidate reference measurement procedure (RMP) for apo(a) quantification.</p><p><strong>Conclusions: </strong>These data further corroborate the validity of our apo(a) candidate RMP as higher order method for certification of commercial Lp(a) tests that is endorsed by the International Federation of Clinical Chemistry and Laboratory Medicine. MS-based molecular detection and quantification of heterogeneous apo(a) proteoforms will allow manufacturers' transitioning from confounded lipoprotein(a) [Lp(a)] mass levels into accurate molar apo(a) levels.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies to verify equimolar peptide release in mass spectrometry-based protein quantification exemplified for apolipoprotein(a).\",\"authors\":\"Yuri E M van der Burgt, Fred P H T M Romijn, Maxim M Treep, L Renee Ruhaak, Christa M Cobbaert\",\"doi\":\"10.1515/cclm-2024-0539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Quantitative protein mass spectrometry (MS) is ideally suited for precision diagnostics and for reference standardization of protein analytes. At the Leiden Apolipoprotein Reference Laboratory we apply MS strategies to obtain detailed insight into the protein-to-peptide conversion in order to verify that quantifier peptides are not partly concealed in miscleaved protein backbone.</p><p><strong>Methods: </strong>Apolipoprotein(a) (apo(a)) was digested in a non-optimal manner to enhance the number of miscleaved peptides that were identified by high resolution liquid chromatography tandem-MS measurements. The protein-to-peptide conversion was carefully mapped with specific attention for miscleaved peptides that contain an apo(a) quantifier peptide. Four different isotopologues of each apo(a)-quantifier peptide were applied to evaluate linearity of internal peptide standards during measurement of specific real-life samples.</p><p><strong>Results: </strong>Two apo(a) quantifier peptides that were concealed in two different miscleaved peptides were included into a multiple reaction monitoring list in our targeted MS-based apo(a) quantifications to alert for potential protein digestion discrepancies. The presence of miscleaved peptides could be ruled out when applying our candidate reference measurement procedure (RMP) for apo(a) quantification.</p><p><strong>Conclusions: </strong>These data further corroborate the validity of our apo(a) candidate RMP as higher order method for certification of commercial Lp(a) tests that is endorsed by the International Federation of Clinical Chemistry and Laboratory Medicine. MS-based molecular detection and quantification of heterogeneous apo(a) proteoforms will allow manufacturers' transitioning from confounded lipoprotein(a) [Lp(a)] mass levels into accurate molar apo(a) levels.</p>\",\"PeriodicalId\":10390,\"journal\":{\"name\":\"Clinical chemistry and laboratory medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry and laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2024-0539\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-0539","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Strategies to verify equimolar peptide release in mass spectrometry-based protein quantification exemplified for apolipoprotein(a).
Objectives: Quantitative protein mass spectrometry (MS) is ideally suited for precision diagnostics and for reference standardization of protein analytes. At the Leiden Apolipoprotein Reference Laboratory we apply MS strategies to obtain detailed insight into the protein-to-peptide conversion in order to verify that quantifier peptides are not partly concealed in miscleaved protein backbone.
Methods: Apolipoprotein(a) (apo(a)) was digested in a non-optimal manner to enhance the number of miscleaved peptides that were identified by high resolution liquid chromatography tandem-MS measurements. The protein-to-peptide conversion was carefully mapped with specific attention for miscleaved peptides that contain an apo(a) quantifier peptide. Four different isotopologues of each apo(a)-quantifier peptide were applied to evaluate linearity of internal peptide standards during measurement of specific real-life samples.
Results: Two apo(a) quantifier peptides that were concealed in two different miscleaved peptides were included into a multiple reaction monitoring list in our targeted MS-based apo(a) quantifications to alert for potential protein digestion discrepancies. The presence of miscleaved peptides could be ruled out when applying our candidate reference measurement procedure (RMP) for apo(a) quantification.
Conclusions: These data further corroborate the validity of our apo(a) candidate RMP as higher order method for certification of commercial Lp(a) tests that is endorsed by the International Federation of Clinical Chemistry and Laboratory Medicine. MS-based molecular detection and quantification of heterogeneous apo(a) proteoforms will allow manufacturers' transitioning from confounded lipoprotein(a) [Lp(a)] mass levels into accurate molar apo(a) levels.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!