利用人工智能改进胸外科手术:当前实践与新兴趋势回顾。

IF 2.8 4区 医学 Q2 ONCOLOGY Current oncology Pub Date : 2024-10-17 DOI:10.3390/curroncol31100464
Mohamed Umair Aleem, Jibran Ahmad Khan, Asser Younes, Belal Nedal Sabbah, Waleed Saleh, Marcello Migliore
{"title":"利用人工智能改进胸外科手术:当前实践与新兴趋势回顾。","authors":"Mohamed Umair Aleem, Jibran Ahmad Khan, Asser Younes, Belal Nedal Sabbah, Waleed Saleh, Marcello Migliore","doi":"10.3390/curroncol31100464","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is increasingly becoming integral to medical practice, potentially enhancing outcomes in thoracic surgery. AI-driven models have shown significant accuracy in diagnosing non-small-cell lung cancer (NSCLC), predicting lymph node metastasis, and aiding in the efficient extraction of electronic medical record (EMR) data. Moreover, AI applications in robotic-assisted thoracic surgery (RATS) and perioperative management reveal the potential to improve surgical precision, patient safety, and overall care efficiency. Despite these advancements, challenges such as data privacy, biases, and ethical concerns remain. This manuscript explores AI applications, particularly machine learning (ML) and natural language processing (NLP), in thoracic surgery, emphasizing their role in diagnosis and perioperative management. It also provides a comprehensive overview of the current state, benefits, and limitations of AI in thoracic surgery, highlighting future directions in the field.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"31 10","pages":"6232-6244"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Thoracic Surgery with AI: A Review of Current Practices and Emerging Trends.\",\"authors\":\"Mohamed Umair Aleem, Jibran Ahmad Khan, Asser Younes, Belal Nedal Sabbah, Waleed Saleh, Marcello Migliore\",\"doi\":\"10.3390/curroncol31100464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is increasingly becoming integral to medical practice, potentially enhancing outcomes in thoracic surgery. AI-driven models have shown significant accuracy in diagnosing non-small-cell lung cancer (NSCLC), predicting lymph node metastasis, and aiding in the efficient extraction of electronic medical record (EMR) data. Moreover, AI applications in robotic-assisted thoracic surgery (RATS) and perioperative management reveal the potential to improve surgical precision, patient safety, and overall care efficiency. Despite these advancements, challenges such as data privacy, biases, and ethical concerns remain. This manuscript explores AI applications, particularly machine learning (ML) and natural language processing (NLP), in thoracic surgery, emphasizing their role in diagnosis and perioperative management. It also provides a comprehensive overview of the current state, benefits, and limitations of AI in thoracic surgery, highlighting future directions in the field.</p>\",\"PeriodicalId\":11012,\"journal\":{\"name\":\"Current oncology\",\"volume\":\"31 10\",\"pages\":\"6232-6244\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/curroncol31100464\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol31100464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)正日益成为医疗实践中不可或缺的一部分,有可能提高胸外科手术的效果。人工智能驱动的模型在诊断非小细胞肺癌(NSCLC)、预测淋巴结转移和帮助有效提取电子病历(EMR)数据方面显示出了显著的准确性。此外,人工智能在机器人辅助胸腔手术(RATS)和围手术期管理中的应用也揭示了提高手术精确度、患者安全性和整体护理效率的潜力。尽管取得了这些进步,但数据隐私、偏见和伦理问题等挑战依然存在。本手稿探讨了人工智能在胸外科中的应用,特别是机器学习(ML)和自然语言处理(NLP),强调了它们在诊断和围手术期管理中的作用。它还全面概述了人工智能在胸外科中的现状、优势和局限性,并强调了该领域的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Thoracic Surgery with AI: A Review of Current Practices and Emerging Trends.

Artificial intelligence (AI) is increasingly becoming integral to medical practice, potentially enhancing outcomes in thoracic surgery. AI-driven models have shown significant accuracy in diagnosing non-small-cell lung cancer (NSCLC), predicting lymph node metastasis, and aiding in the efficient extraction of electronic medical record (EMR) data. Moreover, AI applications in robotic-assisted thoracic surgery (RATS) and perioperative management reveal the potential to improve surgical precision, patient safety, and overall care efficiency. Despite these advancements, challenges such as data privacy, biases, and ethical concerns remain. This manuscript explores AI applications, particularly machine learning (ML) and natural language processing (NLP), in thoracic surgery, emphasizing their role in diagnosis and perioperative management. It also provides a comprehensive overview of the current state, benefits, and limitations of AI in thoracic surgery, highlighting future directions in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current oncology
Current oncology ONCOLOGY-
CiteScore
3.30
自引率
7.70%
发文量
664
审稿时长
1 months
期刊介绍: Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease. We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.
期刊最新文献
Sex-Related Differences in Immunotherapy Outcomes of Patients with Advanced Non-Small Cell Lung Cancer. Sociocultural and Clinical Determinants of Sexual Dysfunction in Perimenopausal Women with and Without Breast Cancer. Electrochemotherapy in the Locoregional Treatment of Metastatic Colorectal Liver Metastases: A Systematic Review. Exploiting Integrin-αVβ3 to Enhance Radiotherapy Efficacy in Medulloblastoma via Ferroptosis. Fostering the Conversation About Complementary Medicine: Acceptability and Usefulness of Two Communication-Supporting Tools for Patients with Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1