{"title":"放射组学的可重复性和可解释性:重要评估。","authors":"Aydın Demircioğlu","doi":"10.4274/dir.2024.242719","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics aims to improve clinical decision making through the use of radiological imaging. However, the field is challenged by reproducibility issues due to variability in imaging and subsequent statistical analysis, which particularly affects the interpretability of the model. In fact, radiomics extracts many highly correlated features that, combined with the small sample sizes often found in radiomics studies, result in high-dimensional datasets. These datasets, which are characterized by containing more features than samples, have different statistical properties than other datasets, thereby complicating their training by machine learning and deep learning methods. This review critically examines the challenges of both reproducibility issues and interpretability, beginning with an overview of the radiomics pipeline, followed by a discussion of the imaging and statistical reproducibility issues. It further highlights how limited model interpretability hinders clinical translation. The discussion concludes that these challenges could be mitigated by following best practices and by creating large, representative, and publicly available datasets.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducibility and interpretability in radiomics: a critical assessment.\",\"authors\":\"Aydın Demircioğlu\",\"doi\":\"10.4274/dir.2024.242719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiomics aims to improve clinical decision making through the use of radiological imaging. However, the field is challenged by reproducibility issues due to variability in imaging and subsequent statistical analysis, which particularly affects the interpretability of the model. In fact, radiomics extracts many highly correlated features that, combined with the small sample sizes often found in radiomics studies, result in high-dimensional datasets. These datasets, which are characterized by containing more features than samples, have different statistical properties than other datasets, thereby complicating their training by machine learning and deep learning methods. This review critically examines the challenges of both reproducibility issues and interpretability, beginning with an overview of the radiomics pipeline, followed by a discussion of the imaging and statistical reproducibility issues. It further highlights how limited model interpretability hinders clinical translation. The discussion concludes that these challenges could be mitigated by following best practices and by creating large, representative, and publicly available datasets.</p>\",\"PeriodicalId\":11341,\"journal\":{\"name\":\"Diagnostic and interventional radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and interventional radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4274/dir.2024.242719\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2024.242719","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Reproducibility and interpretability in radiomics: a critical assessment.
Radiomics aims to improve clinical decision making through the use of radiological imaging. However, the field is challenged by reproducibility issues due to variability in imaging and subsequent statistical analysis, which particularly affects the interpretability of the model. In fact, radiomics extracts many highly correlated features that, combined with the small sample sizes often found in radiomics studies, result in high-dimensional datasets. These datasets, which are characterized by containing more features than samples, have different statistical properties than other datasets, thereby complicating their training by machine learning and deep learning methods. This review critically examines the challenges of both reproducibility issues and interpretability, beginning with an overview of the radiomics pipeline, followed by a discussion of the imaging and statistical reproducibility issues. It further highlights how limited model interpretability hinders clinical translation. The discussion concludes that these challenges could be mitigated by following best practices and by creating large, representative, and publicly available datasets.
期刊介绍:
Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English.
The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.