ESR Essentials:欧洲医学影像信息学学会提出的放射组学实践建议。

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Pub Date : 2025-03-01 Epub Date: 2024-10-25 DOI:10.1007/s00330-024-11093-9
João Santinha, Daniel Pinto Dos Santos, Fabian Laqua, Jacob J Visser, Kevin B W Groot Lipman, Matthias Dietzel, Michail E Klontzas, Renato Cuocolo, Salvatore Gitto, Tugba Akinci D'Antonoli
{"title":"ESR Essentials:欧洲医学影像信息学学会提出的放射组学实践建议。","authors":"João Santinha, Daniel Pinto Dos Santos, Fabian Laqua, Jacob J Visser, Kevin B W Groot Lipman, Matthias Dietzel, Michail E Klontzas, Renato Cuocolo, Salvatore Gitto, Tugba Akinci D'Antonoli","doi":"10.1007/s00330-024-11093-9","DOIUrl":null,"url":null,"abstract":"<p><p>Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"1122-1132"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835989/pdf/","citationCount":"0","resultStr":"{\"title\":\"ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.\",\"authors\":\"João Santinha, Daniel Pinto Dos Santos, Fabian Laqua, Jacob J Visser, Kevin B W Groot Lipman, Matthias Dietzel, Michail E Klontzas, Renato Cuocolo, Salvatore Gitto, Tugba Akinci D'Antonoli\",\"doi\":\"10.1007/s00330-024-11093-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"1122-1132\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-11093-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11093-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

放射组学是一种从诊断图像中提取肉眼无法感知的详细信息的方法。虽然放射组学研究在改善临床决策方面具有巨大潜力,但其固有的方法复杂性使人难以理解分析的每一个步骤,往往造成可重复性和可推广性问题,阻碍临床应用。放射组学分析和模型开发管道中的关键步骤--如图像、图像过滤器的应用和特征提取参数的选择--会极大地影响放射组学特征的值。此外,数据分割、模型比较、微调、评估和校准中的常见错误会降低可重复性,阻碍临床转化。临床采用放射组学还需要深入了解模型的可解释性,并对放射组学特征进行直观解释。为了应对这些挑战,放射组学模型开发人员和临床医生必须精通当前的最佳实践。正确了解和应用这些实践对于准确提取放射组学特征、稳健开发模型和全面评估至关重要,最终可提高可重复性、可推广性和成功临床转化的可能性。在本文中,我们为研究人员提供了我们的建议和实际案例,以促进放射组学的良好研究实践。要点:应了解放射组学固有方法的复杂性,以确保严格的放射组学模型开发,从而改善临床决策。遵守放射组学专用核对表和质量评估工具可确保方法的严谨性。使用标准化的放射组学工具和最佳实践可加强放射组学模型的临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESR Essentials: radiomics-practice recommendations by the European Society of Medical Imaging Informatics.

Radiomics is a method to extract detailed information from diagnostic images that cannot be perceived by the naked eye. Although radiomics research carries great potential to improve clinical decision-making, its inherent methodological complexities make it difficult to comprehend every step of the analysis, often causing reproducibility and generalizability issues that hinder clinical adoption. Critical steps in the radiomics analysis and model development pipeline-such as image, application of image filters, and selection of feature extraction parameters-can greatly affect the values of radiomic features. Moreover, common errors in data partitioning, model comparison, fine-tuning, assessment, and calibration can reduce reproducibility and impede clinical translation. Clinical adoption of radiomics also requires a deep understanding of model explainability and the development of intuitive interpretations of radiomic features. To address these challenges, it is essential for radiomics model developers and clinicians to be well-versed in current best practices. Proper knowledge and application of these practices is crucial for accurate radiomics feature extraction, robust model development, and thorough assessment, ultimately increasing reproducibility, generalizability, and the likelihood of successful clinical translation. In this article, we have provided researchers with our recommendations along with practical examples to facilitate good research practices in radiomics. KEY POINTS: Radiomics' inherent methodological complexity should be understood to ensure rigorous radiomic model development to improve clinical decision-making. Adherence to radiomics-specific checklists and quality assessment tools ensures methodological rigor. Use of standardized radiomics tools and best practices enhances clinical translation of radiomics models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
期刊最新文献
Correction: Diagnostic MRI for deep pelvic endometriosis: towards a standardized protocol? Female interns are not choosing radiology as a career-national survey providing insights into gender imbalance. Reply to the Letter to the Editor: Multiparametric MRI-based VI-RADS: can it predict 1- to 5-year recurrence of bladder cancer? Prediction models for differentiating benign from malignant liver lesions based on multiparametric dual-energy non-contrast CT. Predictive markers for head and neck cancer treatment response: T1rho imaging in nasopharyngeal carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1