{"title":"利用机器学习预测跑步过程中的垂直地面反作用力特征。","authors":"Sieglinde Bogaert, Jesse Davis, Benedicte Vanwanseele","doi":"10.3389/fbioe.2024.1440033","DOIUrl":null,"url":null,"abstract":"<p><p>Running poses a high risk of developing running-related injuries (RRIs). The majority of RRIs are the result of an imbalance between cumulative musculoskeletal load and load capacity. A general estimate of whole-body biomechanical load can be inferred from ground reaction forces (GRFs). Unfortunately, GRFs typically can only be measured in a controlled environment, which hinders its wider applicability. The advent of portable sensors has enabled training machine-learned models that are able to monitor GRF characteristics associated with RRIs in a broader range of contexts. Our study presents and evaluates a machine-learning method to predict the contact time, active peak, impact peak, and impulse of the vertical GRF during running from three-dimensional sacral acceleration. The developed models for predicting active peak, impact peak, impulse, and contact time demonstrated a root-mean-squared error of 0.080 body weight (BW), 0.198 BW, 0.0073 BW <math><mrow><mo>⋅</mo></mrow> </math> seconds, and 0.0101 seconds, respectively. Our proposed method outperformed a mean-prediction baseline and two established methods from the literature. The results indicate the potential utility of this approach as a valuable tool for monitoring selected factors related to running-related injuries.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting vertical ground reaction force characteristics during running with machine learning.\",\"authors\":\"Sieglinde Bogaert, Jesse Davis, Benedicte Vanwanseele\",\"doi\":\"10.3389/fbioe.2024.1440033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Running poses a high risk of developing running-related injuries (RRIs). The majority of RRIs are the result of an imbalance between cumulative musculoskeletal load and load capacity. A general estimate of whole-body biomechanical load can be inferred from ground reaction forces (GRFs). Unfortunately, GRFs typically can only be measured in a controlled environment, which hinders its wider applicability. The advent of portable sensors has enabled training machine-learned models that are able to monitor GRF characteristics associated with RRIs in a broader range of contexts. Our study presents and evaluates a machine-learning method to predict the contact time, active peak, impact peak, and impulse of the vertical GRF during running from three-dimensional sacral acceleration. The developed models for predicting active peak, impact peak, impulse, and contact time demonstrated a root-mean-squared error of 0.080 body weight (BW), 0.198 BW, 0.0073 BW <math><mrow><mo>⋅</mo></mrow> </math> seconds, and 0.0101 seconds, respectively. Our proposed method outperformed a mean-prediction baseline and two established methods from the literature. The results indicate the potential utility of this approach as a valuable tool for monitoring selected factors related to running-related injuries.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2024.1440033\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1440033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Predicting vertical ground reaction force characteristics during running with machine learning.
Running poses a high risk of developing running-related injuries (RRIs). The majority of RRIs are the result of an imbalance between cumulative musculoskeletal load and load capacity. A general estimate of whole-body biomechanical load can be inferred from ground reaction forces (GRFs). Unfortunately, GRFs typically can only be measured in a controlled environment, which hinders its wider applicability. The advent of portable sensors has enabled training machine-learned models that are able to monitor GRF characteristics associated with RRIs in a broader range of contexts. Our study presents and evaluates a machine-learning method to predict the contact time, active peak, impact peak, and impulse of the vertical GRF during running from three-dimensional sacral acceleration. The developed models for predicting active peak, impact peak, impulse, and contact time demonstrated a root-mean-squared error of 0.080 body weight (BW), 0.198 BW, 0.0073 BW seconds, and 0.0101 seconds, respectively. Our proposed method outperformed a mean-prediction baseline and two established methods from the literature. The results indicate the potential utility of this approach as a valuable tool for monitoring selected factors related to running-related injuries.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.