基于 IMPC 的筛选发现,ROBO1 可通过抑制成骨分化来调节骨质疏松症。

IF 4.6 2区 生物学 Q2 CELL BIOLOGY Frontiers in Cell and Developmental Biology Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI:10.3389/fcell.2024.1450215
Xiangzheng Zhang, Yike Wang, Miao Zheng, Qi Wei, Ruizhi Zhang, Keyu Zhu, Qiaocheng Zhai, Youjia Xu
{"title":"基于 IMPC 的筛选发现,ROBO1 可通过抑制成骨分化来调节骨质疏松症。","authors":"Xiangzheng Zhang, Yike Wang, Miao Zheng, Qi Wei, Ruizhi Zhang, Keyu Zhu, Qiaocheng Zhai, Youjia Xu","doi":"10.3389/fcell.2024.1450215","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The utilization of denosumab in treating osteoporosis highlights promising prospects for osteoporosis intervention guided by gene targets. While omics-based research into osteoporosis pathogenesis yields a plethora of potential gene targets for clinical transformation, identifying effective gene targets has posed challenges.</p><p><strong>Methods: </strong>We first queried the omics data of osteoporosis clinical samples on PubMed, used International Mouse Phenotyping Consortium (IMPC) to screen differentially expressed genes, and conducted preliminary functional verification of candidate genes in human Saos2 cells through osteogenic differentiation and mineralization experiments. We then selected the candidate genes with the most significant effects on osteogenic differentiation and further verified the osteogenic differentiation and mineralization functions in mouse 3T3-E1 and bone marrow mesenchymal stem cells (BMSC). Finally, we used RNA-seq to explore the regulation of osteogenesis by the target gene.</p><p><strong>Results: </strong>We identified <i>PPP2R2A</i>, <i>RRBP1</i>, <i>HSPB6</i>, <i>SLC22A15</i>, <i>ADAMTS4</i>, <i>ATP8B1</i>, <i>CTNNB1</i>, <i>ROBO1</i>, and <i>EFR3B</i>, which may contribute to osteoporosis. <i>ROBO1</i> was the most significant regulator of osteogenesis in both human and mouse osteoblast. The inhibitory effect of Robo1 knockdown on osteogenic differentiation may be related to the activation of inflammatory signaling pathways.</p><p><strong>Conclusion: </strong>Our study provides several novel molecular mechanisms involved in the pathogenesis of osteoporosis. <i>ROBO1</i> is a potential target for osteoporosis intervention.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1450215"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494888/pdf/","citationCount":"0","resultStr":"{\"title\":\"IMPC-based screening revealed that <i>ROBO1</i> can regulate osteoporosis by inhibiting osteogenic differentiation.\",\"authors\":\"Xiangzheng Zhang, Yike Wang, Miao Zheng, Qi Wei, Ruizhi Zhang, Keyu Zhu, Qiaocheng Zhai, Youjia Xu\",\"doi\":\"10.3389/fcell.2024.1450215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The utilization of denosumab in treating osteoporosis highlights promising prospects for osteoporosis intervention guided by gene targets. While omics-based research into osteoporosis pathogenesis yields a plethora of potential gene targets for clinical transformation, identifying effective gene targets has posed challenges.</p><p><strong>Methods: </strong>We first queried the omics data of osteoporosis clinical samples on PubMed, used International Mouse Phenotyping Consortium (IMPC) to screen differentially expressed genes, and conducted preliminary functional verification of candidate genes in human Saos2 cells through osteogenic differentiation and mineralization experiments. We then selected the candidate genes with the most significant effects on osteogenic differentiation and further verified the osteogenic differentiation and mineralization functions in mouse 3T3-E1 and bone marrow mesenchymal stem cells (BMSC). Finally, we used RNA-seq to explore the regulation of osteogenesis by the target gene.</p><p><strong>Results: </strong>We identified <i>PPP2R2A</i>, <i>RRBP1</i>, <i>HSPB6</i>, <i>SLC22A15</i>, <i>ADAMTS4</i>, <i>ATP8B1</i>, <i>CTNNB1</i>, <i>ROBO1</i>, and <i>EFR3B</i>, which may contribute to osteoporosis. <i>ROBO1</i> was the most significant regulator of osteogenesis in both human and mouse osteoblast. The inhibitory effect of Robo1 knockdown on osteogenic differentiation may be related to the activation of inflammatory signaling pathways.</p><p><strong>Conclusion: </strong>Our study provides several novel molecular mechanisms involved in the pathogenesis of osteoporosis. <i>ROBO1</i> is a potential target for osteoporosis intervention.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"12 \",\"pages\":\"1450215\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2024.1450215\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1450215","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:使用地诺单抗治疗骨质疏松症凸显了以基因靶点为指导干预骨质疏松症的广阔前景。虽然基于全局组学的骨质疏松症发病机制研究产生了大量潜在的临床转化基因靶点,但确定有效的基因靶点却面临挑战:我们首先在PubMed上查询了骨质疏松症临床样本的omics数据,利用国际小鼠表型协会(IMPC)筛选差异表达基因,并通过成骨分化和矿化实验在人Saos2细胞中对候选基因进行了初步功能验证。然后,我们选择了对成骨分化影响最显著的候选基因,并在小鼠 3T3-E1 和骨髓间充质干细胞(BMSC)中进一步验证了其成骨分化和矿化功能。最后,我们利用 RNA-seq 技术探讨了靶基因对成骨的调控作用:结果:我们发现了可能导致骨质疏松症的 PPP2R2A、RRBP1、HSPB6、SLC22A15、ADAMTS4、ATP8B1、CTNNB1、ROBO1 和 EFR3B。ROBO1 是人类和小鼠成骨细胞成骨过程中最重要的调节因子。Robo1敲除对成骨分化的抑制作用可能与炎症信号通路的激活有关:我们的研究提供了骨质疏松症发病机制中的几种新的分子机制。ROBO1是干预骨质疏松症的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMPC-based screening revealed that ROBO1 can regulate osteoporosis by inhibiting osteogenic differentiation.

Introduction: The utilization of denosumab in treating osteoporosis highlights promising prospects for osteoporosis intervention guided by gene targets. While omics-based research into osteoporosis pathogenesis yields a plethora of potential gene targets for clinical transformation, identifying effective gene targets has posed challenges.

Methods: We first queried the omics data of osteoporosis clinical samples on PubMed, used International Mouse Phenotyping Consortium (IMPC) to screen differentially expressed genes, and conducted preliminary functional verification of candidate genes in human Saos2 cells through osteogenic differentiation and mineralization experiments. We then selected the candidate genes with the most significant effects on osteogenic differentiation and further verified the osteogenic differentiation and mineralization functions in mouse 3T3-E1 and bone marrow mesenchymal stem cells (BMSC). Finally, we used RNA-seq to explore the regulation of osteogenesis by the target gene.

Results: We identified PPP2R2A, RRBP1, HSPB6, SLC22A15, ADAMTS4, ATP8B1, CTNNB1, ROBO1, and EFR3B, which may contribute to osteoporosis. ROBO1 was the most significant regulator of osteogenesis in both human and mouse osteoblast. The inhibitory effect of Robo1 knockdown on osteogenic differentiation may be related to the activation of inflammatory signaling pathways.

Conclusion: Our study provides several novel molecular mechanisms involved in the pathogenesis of osteoporosis. ROBO1 is a potential target for osteoporosis intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
期刊最新文献
Editorial: Phosphorylation-dependent peptidyl-prolyl cis/trans isomerase PIN1 - volume II. Evolution of g-type lysozymes in metazoa: insights into immunity and digestive adaptations. Combining external physical stimuli and nanostructured materials for upregulating pro-regenerative cellular pathways in peripheral nerve repair. Deciphering transcriptome patterns in porcine mesenchymal stem cells promoting phenotypic maintenance and differentiation by key driver genes. Role of ABCC5 in cancer drug resistance and its potential as a therapeutic target.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1